
When a single objective, such as execution time, is available, the autotuning search problem can be posed as

a numerical optimization problem. However, it is increasingly common to have multiple objectives, such as

execution time, energy consumption, resilience to errors, power demands, and memory footprint. When the

relative weights or constraints on these objectives are not known at search time, one must pose the autotuning

search problem as a multi-objective optimization problem. We describe the optimization framework for search,

discuss some of the potential tradeoffs among multiple objectives, and provide empirical evidence that such

tradeoffs do exist in practice.

Optimization as Optimization

Multi-objective Optimization Exploring Tradeoffs in SUPER Abstract

1.5X speedup evaluating

40 of 107 possible variants

THE OBJECTIVE

• A single, real-valued performance objective

• Can capture average, median, quantile (e.g., worst-case) empirical performance

• Often stochastic/noisy (from measurement and/or run)

• Depends on machine and input size (or distribution over inputs)

• Examples: run time, failure rate, expected run time

Collecting Objective Metrics

The problem of empirically optimizing a code can be posed as the mathematical optimization problem

Tuning for Multiple Objectives:

Power versus Performance

Prasanna Balaprakash, Paul Hovland (lead), Stefan Wild

Argonne National Laboratory

Ananta Tiwari

San Diego Supercomputer Center

Jeff Hollingsworth

University of Maryland

“Can search algorithms save large-scale automatic performance tuning?” Balaprakash, Wild, & Hovland, iWAPT 2011.
“ Online Adaptive Code Generation and Tuning .” Tiwari & Hollingsworth, IPDPS 2011.
“SPAPT (Search Problems in Automatic Performance Tuning).” Balaprakash, Wild, & Norris, ICCS 2012.
“An Experimental Study of Global and Local Search Algorithms in Empirical Performance Tuning.” Balaprakash, Wild, & Hovland, VECPAR 2012.

THE DECISIONS

•Binary (compiler type, +examples)

•Integer (unroll factor, register tiling, +examples)

•“Continuous” (algorithmic parameters, internal

tolerances)

•Each x generates a code variant (through source-to-

source/compiler-based transformation, etc.)

THE CONSTRAINTS

•Ensuring feasibility of transformation

•Correctness of output, maximum temperature, etc.

Search spaces are enormous,

examining all possible variants

unnecessary and highly inefficient

(if not impossible).

GOAL:

Use formulation as a mathematical problem to leverage

modern derivative-free optimization algorithms for

obtaining approximate minimizers while examining a tiny

number of variants.

Architecture Kernel input size

Arises when several objectives need to be to optimized simultaneously
•No weights given a priori

•Sometimes objectives are correlated and satisfied

simultaneously; otherwise there are tradeoffs

•Code variants now live both in a decision

space and in an objective space

• Code variants for which no

other variant is better in all

objectives are said to be

nondominated or Pareto

optimal

• Pareto optimal variants can be

used to optimally schedule jobs

on leadership computing

facilities given constraints on

time or energy

Objective space

Decision space

• Properties such as monotonicity can often be observed

with respect to some decisions

• Time decreases in a monotone fashion in number

of threads, for many ranges of thread count

• Power increases in a monotone fashion in number

of threads

• Tradeoffs between power and time can be observed for

many different tuning spaces

• Finding Pareto optimal points can be made faster by

exploiting known properties, such as monotonicity, as

well as by discovering latent structure in the objectives

Whether tradeoffs between energy and time exist or “race-to-idle” conditions are present depends on computational

workloads, architectural features, and the tunable decisions

Many other sets of performance and power-based simultaneous objectives are of interest

Future Investigations

Support for this work was provided through the Scientific Discovery through Advanced Computing (SciDAC)

program funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research.

• Develop multiobjective optimization algorithms for autotuning search

• Indentify appropriate use cases

• Study other tradeoffs

• Resilience versus memory footprint

• Resilience versus execution time

• Memory footprint versus execution time

• Memory footprint versus energy

