
Building a Resilience Autotuning Framework:
SUPER’s integrated resilience strategy

Bronis R. de Supinski, Marc Casas-Guix,
Dan Quinlan, Chunhua Liao

LLNL
George Bosilca

University of Tennesse
Ganesh Gopalakrishnan

University of Utah

SUPER is creating a comprehensive tool set to evaluate application fault vulnerability, to reduce it and to assess trade-offs between reduced vulnerability and performance. Our
overall goal is automatic vulnerability assessment and transformations that balance those concerns. To attain this goal, we are developing tools to inject faults into applications to
identify vulnerable code regions and data structures, for which we develop techniques to reduce overall application vulnerability. Hand transformations demonstrate possible
improvements and motivate directives to guide transformations that we automate through ROSE. That work naturally leads to an autotuning framework that explores combinations of
vulnerability-reducing transformations and identifies the best overall set.

Resilience Improvements by Hand

Transformations
• Replication of the most sensitive variables and routines.

• Error propagation studies.

• Code invariants derived through static analysis of the source code.

• Evaluation of the improvements through fault injection.

Language Extensions & Compiler Technology for Resilience
• Annotations that allow user to express fault-tolerant requirements and expectations: when and

where errors matter and what to do about them.

• Increase application MTBF, reducing the need for C/R (decrease bandwidth and energy)

• Resilience-aware Scheduling (RaS) leveraging idle resources to replicate instructions for transient

error detection and correction, exploiting intrinsic resilience of application.

• ROSE source-level resilience-oriented and user-guided transformations

Vulnerability Assessment
• Fault injection campaigns.

• Identification of vulnerable code regions and

data structures.

Pedro C. Diniz, Bob Lucas
USC-ISI

General Autotuning Framework

Compiler

techniques to

automate and

improve code

transformations

Code

transformations

through static

and dynamic

analysis

Optimization

techniques to

balance

resilience and

performance

Vulnerability

assessment

of code regions

and data-

structures

Support for this work was provided through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research (and Basic Energy

Sciences/Biological and Environmental Research/High Energy Physics/Fusion Energy Sciences/Nuclear Physics).

Feedback:

Optimal resilience improvements

and their cost

Gopalakrishnan thanks Prof.
Rakamaric for our collaborations
on Resilience Research at Utah.

