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Importance of entrainment

Vertical wind shear » Cloud width <

Entrainment/detrainment

Updraft core properties
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Vertical mass flux scales as radius
squared

M~pwR?*

Horizontal mass uptake e rate with
height scales as radius

e~puRr

Fractional entrainment & scales e/M,
and therefore inverse radius

E~ e/M ""R_l



From Morrison et al.

Theoretical relationship
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As radius increases (to the right), dilution
decreases (upward)
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How does vertical wind shear
influence cloud width?




From Peters et al.
(2019), JAS
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Distribution of updraft radii among CRM
simulations
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Using vertical wind shear to
predict updraft width,
entrainment, in a “smart
entraining CAPE” calculation




Background sounding: T,
RH, wind, etc

\

CAPE (for undilute parcel)

Tradition
entraining CAPE

Entrainment —____ Diluted
buoyancy

Vertical

velocity/kinetic energy



Background sounding: T,
RH, wind, etc

—

Shear CAPE (for undilute parcel)

AN

Updraft

New formula d\

Entrainment —____ Diluted
buoyancy

Vertical

velocity/kinetic energy
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Outstanding problems

How do assumptions about updraft structure (i.e. plumes vs
thermals) affect entrainment?

What environmental factors other than vertical wind shear control
updraft radius, particularly when shear is week?

Entrainment is a notoriously nebulas process — how do we reconcile
the various methods for defining and measuring these quantities? Is
there an obvious method that is optimal?

How do we improve the treatment of entrainment in cumulus
parameterizations based on the fundamental knowledge we have
gained?



