LEARNING OBJECTIVES:

2.18.01 Identify the factors that affect the operator's selection of a portable air sampler.

2.18.02 Identify the physical and operating characteristics and the limitation(s) of the Staplex and Radeco portable air samplers.

2.18.03 Identify the physical and operating characteristics and the limitation(s) of Motor air pumps.

2.18.04 List the steps for a preoperational checkout of a portable air sampler.

2.18.05 Identify the physical and operational characteristics and the limitation(s) of beta-gamma constant air monitors (CAMs).

2.18.06 Identify the physical and operating characteristics and the limitation(s) of alpha constant air monitors (CAMs).

NOTE: The text is provided for some commonly used instruments. The site must adjust text as necessary for instruments used at each site. Text added for specific instruments used at the site must, at a minimum, cover material required by the objectives.

INTRODUCTION

This lesson covers air sampling equipment in relation to types used, operational and physical characteristics, limitations, and methods of sampling. The RCT uses this information to identify and assess the hazards presented by airborne contamination and establish protective requirements for work performed in airborne contamination areas.
2.18 - AIR SAMPLING EQUIPMENT

2.18.01 Identify the factors that affect the operator's selection of a portable air sampler.

SELECTION FACTORS

The factors affecting the selection of portable air samplers are:

- Type of radiation emitted by airborne contaminant in question
- Physical state of airborne contaminant
- Type and duration of job being performed

PHYSICAL AND OPERATING CHARACTERISTICS AND LIMITATIONS

2.18.02 Identify the physical and operating characteristics and the limitation(s) of the Staplex and Radeco portable air samplers.

STAPLEX

Operational characteristics

- Centrifugal force is the method used to induce air movement. Centrifugal force produces kinetic energy. Resultant velocity pressure converted to suction for moving sampled air
- Self-cooling - Inappropriate for long-term continuous sampling
- Variable orifice flowmeter calibrated 0-70 cfm. Flow rate sticker on side is specific for appropriate collection method. Typical flow rate(s): 7-28 cfm

Physical characteristics

- 110-V fan motor with on-off switch. Requires external power source
- 4-inch filter holder assembly with intake screen. MSA charcoal adaptor available
- Portable: 10 pounds

-2- Issued 05/95

Limitations

- Inappropriate for long-term continuous sampling
- May create an airborne area due to exhaust
- Potential "crawler" while in operation due to the high torque generated by the fan
- DO NOT use in explosive atmospheres

Methods of sampling

- Filtration
- Adsorption, if charcoal is used
- Impaction, if impactor head is installed

Placement for surveys

- Avoid creating airborne activity through stirring up dust with sampler exhaust air
- Tripods available
- May be hung on chain for optimum positioning

Annular Kinetic Impactor Head

- Inertial Collector-Head collects large airborne particles such as plutonium without collecting coexisting particles containing radon and thoron

- Principle: Air to be sampled enters annular space at rear, makes a 180-degree turn at greased planchet, and out the center tube

- Size of particles collected can be varied by adjusting slit width and air flow velocity

- Physical characteristics. - Head replaces Staplex screened intake orifice. Lightly greased planchet placed on head intake.
RADECO (H809-VI)

Operational characteristics

- Equipped with rotameter air flow indicator. Rotameter consists of a "float" which is free to move up and down and a vertical tapered tube, which is larger at top than bottom and contains the float. Air flows up the tube causing float to rise. Height to which float rises is proportional to air flow rate
- Many different types of floats found at facilities however, rotameters are conventionally read at the highest point of maximum diameter, unless otherwise indicated. If in doubt about how to read a particular rotameter, check with supervision.
- Flow rate adjustable from 1 to 8 cfm
- 110-125 VAC

Physical characteristics

- Equipped with a two-stage turbine blower and one horsepower self-cooling universal type motor
- Sample head uses 2 in. or 47 mm particulate and iodine filters
- Instrument panel has a three-position switch - (HIGH/OFF/VARIABLE), a control knob for FLOW ADJUST, a fuse holder, and a rotameter
- Weight: 10 lbs

Limitations

- Cannot be used in explosive atmospheres
- Inappropriate for long-term continuous sampling

Methods of sampling employed

- Filtration
- Adsorption, if charcoal is used
2.18.03 Identify the physical and operating characteristics and the limitation(s) of Motor air pumps.

MOTOR AIR PUMPS

Types of motor air pumps:

• MotoAir
• ITT
• Eberline.

These units normally used to sample for extended periods of time at low flow rates.

Operational characteristics of typical motor air pumps

• Flow rate maintained relatively constant by regulator.
• Requires 110 V power supply.

Physical characteristics of typical motor air pumps

• Sample heads used designed to accept 2 inch diameter (47 mm) media for both particulates and iodine.
• Common components are the carbon vane pump, the constant flow air regulator, and the flow meter.
• Grounded three wire power cord is provided.

Typical features - Eberline RAS-1

• Operational characteristics - Rotameter type flow meter with a flow rate range 0.5 to 3.5 cfm and power requirement 5 amps
• Physical characteristics - 'Screw in' type particulate filter holder, a 'Clamshell' type iodine filter holder, a ON/OFF power switch, and weight is 30 lb

Sampling considerations

• Filter paper must cover intake screen.
2.18.04 List the steps for a preoperational checkout of a portable air sampler.

PREOPERATIONAL CHECKOUT OF PORTABLE AIR SAMPLERS

1. Verify the air sampler has a current Calibration Sticker.

2. Physical Damage
 - Power cord in good condition
 - All gaskets in place
 - General physical condition of housing and controls.

3. Working Condition
 - Verify operating properly by checking for sound (no unusual noises), sight (no smoke, no excessive sparking from motor brushes), smell (no burning), and feel (no unusual vibration, not overly hot to touch).
 - Appropriate air flow
 - Controls on sampler are operable
 - Ensure filters and cartridges are loaded in proper orientation to air flow prior to sampling.
BETA-GAMMA CONSTANT AIR MONITORS (CAMs)

General Characteristics

- Continuously monitor quality of particulate beta-gamma airborne activity in selected area.

Physical characteristics

- GM detector(s) - usually pancake type. Some utilize one GM detector to measure activity on filter. Others utilize two GM detectors; one GM detector used to measure activity on filter, and the other GM detector to measures ambient background for background subtraction.
- Filter paper holder assembly in lead shield
- Strip chart recorder
- Mounted on enclosed, portable cart
- Photohelic air flow meter
- Alarm lights for high Activity alarm and low air flow alarm.

Limitations of CAMs

- Low air flow - must be placed near or downwind suspected source
- Poor response to low energy beta
- Lead shield ineffective for high gamma energies, therefore the CAM must be in low background
- Responds to radon, thoron, and daughters which can produce a fluctuating background on recorder.
• Not very portable; approximate weight 500 pounds

Method of sampling

• filtration

Operation and Use

• Initial startup - Check all switches in off position (Master switch and HV switch) plug in power cord (110 V) - Air blower will start and reset any alarms that activate

• Ensure sufficient filter paper

• Turn master switch on and allow two minute warmup

• Turn HV switch on and allow 30 second warmup

• E & I to adjust the following settings: HV level, high and low level alarm settings scale switch overlap setting

• Set recorder speed selector switch; 3/4 in. per minute to ascertain chart moves, 3/4 in. per hour, routine operation

• CAM operating if slow buildup noted on recorder chart.

2.18.06 Identify the physical and operating characteristics and the limitation(s) of alpha constant air monitors (CAMs).

ALPHA CONSTANT AIR MONITORS (CAMs)

Continuously monitor quality of particulate alpha airborne activity in selected areas

• Operating characteristics - Air pumping system pulls air through impactor head. Count rate meter monitors planchet which will activate high activity alarm horn and light at preset points.
Physical characteristics

- External cabinet features are: power supply, magnehelic gauge, count rate meter (CRM), recorder chart, power switches, outlets, photohelic air flow meter, and alarm lights (Radiation alarm and Low flow alarm).

- Internal cabinet features are: Annular Kinetic Impactor sample head, blower, planchet (greased with ZnS and Silicone) and the Photomultiplier (PM) tube.

Limitation(s)

- Does not give extremely accurate quantitative alpha measurement, but it gives warning of increase activity and is possible to make estimates.

- Dust buildup and radon-thoron activity affect efficiency.

Method of sampling

- Impaction

Operation and Use

- Initial startup.

- Place new "Alpha Tak" planchet on impactor head: Open light tight box door, move PM tube housing from impactor head, remove any used planchet, place new planchet on impactor head, move PM tube housing back into position, close door, indicate action on recorder chart (date, time, etc.), and take any used planchets to HP office for processing.

- Plug in power cord ensuring all switches are off prior to plugging power cord in.

- Turn on switches in following order: outlet switch, then CRM power switch.

- Set CRM to x 1 scale.

- Set alarm to desired level.

- Set CRM PHA/GROSS switch to GROSS.

- Notify E & I and/or supervisor of any malfunctions.
SUMMARY

This lesson covered air sampling equipment in relation to types used, operational and physical characteristics, limitations, and methods of sampling. The RCT uses this information to identify and assess the hazards presented by airborne contamination and establish protective requirements for work performed in airborne contamination areas.

REFERENCES

1. Basic Radiation Protection Technology, Daniel A. Gollnick
2. Operational Health Physics, Harold J. Moe
3. ANSI N323
4. (Various Manufacture's Technical Manuals)