
1

Application Code Design Constraints

  Several Axes of Complexity
  Architecture, infrastructure, data layout, interoperability
•  Many moving parts

  Requirements
  Maintainable code with reliable results
  Retain code portability and performance
  Measurable and predictable performance

  The challenges in meeting the requirements;
tension between
  Modularity and performance
  Readable/maintainable code and portability
  Easy adaptability to new and heterogeneous architectures and

complex multi-physics capabilities - Extensibility

2

Why Invest in Code Architecture

  Done right code architecture allows extensibility, capability
addition and branching into new regimes and domains
  Reduces barrier to entry into HPC
  Enables multidisciplinary development

  Current Designs good for fat homogeneous nodes
  Modular structure : APIs that allow for some plug-and-play
  SPMD model – parallelism mostly confined to infrastructure
  One generalized data layout, solvers conform to it as far as possible
•  Performance hit when they don’t

  Why Change
  Loop level OpenMP already breaks the separation between parallel

complexity and the numerics
  The data-structures rely on being coarse-grained, not suitable for

fine-grain parallelism
  There is the cost of bulk synchronous parallelism
•  Hides potential for parallelism

  Auto-tuning is harder to do

3

  Writing from scratch is unlikely to produce reliable
multi-physics codes soon
  Years of production use eliminates both modeling and

implementation bugs
  Lessons about interoperability internalized by the developers
Parallel investment in new codes useful, but for the longer term

  Consensus is emerging about techniques that will help
cope with heterogeneity
  Some form of tiling, eDSLs, runtime task scheduling
  Code architects have to consider infrastructure design choices

that will provide plugs for these techniques
The last generation of code frameworks have converged to very
similar architectures – the solutions for next generation framework
design might do the same

Why Invest in Mature Codes Now

4

Considerations for Architecting

specific
hardware
oblivious
solver

index-free
and close to
functional

memory
access

EDSL/code
transformation

async
scheduling

Parallelism

 Refactor units as interdependent tasks
 register dependences with the abstraction layer
 expose data/operation fusion possibilities

