
Improving Software Productivity for
Extreme-scale Systems

with Domain-specific Languages
John Mellor-Crummey

Department of Computer Science
Rice University

johnmc@rice.edu

ASCR Workshop on Software Development-time Productivity for Extreme-scale Science January 13, 2014

2

Productivity Challenges - I

 Increasing complexity of extreme-scale architectures
• Cores

—more cores
—varied support for instruction-level parallelism
—more hardware multithreading
—longer vectors

• Memory hierarchies
—more cache levels
—UMA vs. NUMA within and across chips
—multiple memory spaces and flavors

• Heterogeneous cores: performance, MIMD vs. SIMT, ISA

• Accelerators with varied programming models

• Increasing scale of parallelism

3

Productivity Challenges - II

• Applications for extreme scale systems must be ...
— portable
– applications will outlive multiple generations of HPC systems

— high performance
– essential for extreme-scale simulations to complete in reasonable time

— evolvable
– scientific code must serve as building blocks for multi-layered investigations

 support incremental extension of capabilities: new physics, new problem classes

• Mapping sophisticated applications to extreme-scale systems is hard
— development
– integrated science, i.e., multi-physics
– sophisticated methods for scalable high performance, e.g., AMR, multigrid
– difficult mapping: architecture considerations affect algorithms and their expression

— debugging
– sophisticated codes are complex, as is their interplay with architectures

 boundary conditions, special cases, race conditions, ...
– scarcity of automated methods for pinpointing and diagnosing problems

— tuning
– measurement, analysis, diagnosis are all difficult at extreme-scale

State of the Art

• MPI+OpenMP+vector intrinsics+CUDA/OpenACC/OpenCL
—express algorithms at a level that is unsuitable for mapping

efficiently to a wide variety of extreme-scale architectures
– CUDA for GPU accelerators vs. OpenMP for multithreaded CPU

—too many decisions about control are already encoded

• Domain-specific languages
—examples
– Tensor Contraction Engine for quantum chemistry
– Liszt for PDE on unstructured meshes
– SPIRAL for discrete linear transforms
– Basic linear algebra compiler (Spampinato & Püschel, CGO ’14)

—open problems
– lack DSLs that support key capabilities for extreme-scale applications
– difficult to develop DSL implementations
– difficult to integrate into full applications for extreme-scale systems
– lack tuning tools for DSL developers and end users

4

Gaps

• Compiler infrastructure for refactoring legacy programs

• Compiler infrastructure for parsing, analysis, transformation, and
code generation for domain-specific languages

• Framework for leveraging domain knowledge

• Transformation building blocks to tailor programs for features of
emerging architectures
—exploit strengths: vectors, threads, cache, scratchpad
—avoid weaknesses: low bandwidth, high latency, synchronization

• Performance models to help guide code generation

• Performance tools to
—identify impediments to code performance and opportunities
—assess effectiveness of DSL compilation strategies
—assess the quality DSL-generated code for an application

5

