
Productive Extreme-Scale Computing via Common Abstract Machine
Models, Programming Models, and Integrated Performance Modeling

Samuel Williams, Brian Van Straalen, Leonid Oliker

Lawrence Berkeley National Laboratory
SWWilliams@lbl.gov

In order to guarantee high-performance, productive computing on extreme-scale
supercomputers, a few guidelines should be adhered to. First, we should agree on a common, yet
parameterizable, abstract machine model. Today, we see two camps of abstract machine models
as exemplified by the shared memory extension of the Von Neumann CPU architectures, and the
explicitly hierarchical/heterogeneous machine model seen in various GPU-like accelerators. The
former has allowed us to easily port code to a myriad of CPU architectures including x86 CPUs
(Xeon or Opteron), three generations of Blue Gene, SPARC, MIPS, various vector processors,
and even Intel’s latest Xeon Phi manycore processor. The explicitly hierarchical/heterogeneous
machine model is not a new phenomenon, but rather an approach that appears periodically when
the performance, energy, or design cost of virtualizing the hierarchy or heterogeneity becomes
prohibitive given the current process technology or market constraints. Unfortunately, the
presence of a second (or third) abstract machine model demands we contemplate two
dramatically different implementations. We are thus presented with the unpalatable choice of
either destroying productivity (writing a second implementation from scratch) or ignoring one
class of machine (most likely the less productive and less portable).

Second, we must have common, standards-based programming models (or hierarchy of
programming models). The presence of at least one common programming model across all
architectures ensures we can write one implementation of a program and have it run everywhere.
Despite the evolution of architectures to include heterogeneous processing or hierarchical
memories, it is imperative architects, compiler writers, and runtime software engineers work
together to preserve a common abstract machine model and programming model that scientists
may target.

Although the presence of a common abstract machine model and programming model
may provide portability and possibly (weak) scalability by nodes, it is no guarantee of
performance portability (i.e. efficient use of a processor). In fact, determining optimality is an
immense challenge. As part of the SciDAC Institute for Sustained Performance, Energy, and
Resilience, we are developing a Roofline Toolkit that will allow programmers to easily analyze
their code on a routine-by-routine basis in order to understand its performance potential. The
toolkit is based on a generalization of the Roofline model which uses bound and bottleneck
analysis to provide a performance bound for a loop nest by examining its (DRAM)
communication and computational requirements. The model has been refined to reflect the
complexity of in-core performance was well as the cache hierarchy and their individual
bandwidths. We believe the model can be extended and automated so that it can deal with
arbitrary code and explicitly programmed memory architectures (i.e. local stores or device
memories on accelerators).

One expects the combination of a common abstract machine model and programming
model will lead to suboptimal performance for some routines on some machines. If used in
conjunction with performance monitoring tools, we believe the toolkit will allow one to identify
which routines are underperforming. Knowing which thousand lines of code in a multi-million-
line application should be written in order to improve performance is a key to performance
portability. That is, it is made clear where programmers should focus their efforts.

