Have a Default Implementation of Everything

Brian Van Straalen,
bvstraalen@lbl.gov

October 8, 2013

A vigorous extreme-scale computing ecosystem has practitioners at many different levels of
HPC sophistication. The Peta-scale developers of today were Tera-scale level or laptop computing
people just five years ago. We lament the shortage of skilled practitioners at the highest level of
computing sophistication. How do we make this approach to science more approachable with a
shallower learning curve?

I propose that one major impediment to young engineers and scientists taking on computational
science expertise is the interdependence amongst all of our scientific software packages before any-
thing useful can be done. While I was a member of the Fusion Simulation Project for the Office
of Fusion Energy Sciences, it was the norm for any particular scientific package to have a build
process that required a minimum of 10 and up to 50 external library dependencies. The FACETS
team went so far as to build a custom program to help them manage all of the dependencies of
their fusion simulation program. They called it Builder. But one need not go to this extent to
discover barriers to entry. Often multi-package simulation technologies require an interdependence
of their configuration.

The reason we use third-party packages in our scientific modeling is that specialized knowledge
is required in each of these algorithmic components to achieve high performance. Packages that
are hard to build are difficult for an entry-level scientist to adopt. Consequently, they can delay
until the need is overwhelming or forego scientific computing entirely. At the minimum they will
be required to learn the intricacies of many packages at the same time. This is what creates a steep
learning curve. So what’s the alternative? For any package that implements a useful scientific
computational algorithm, there should be a version of that package distributed that requires the
minimum number of external dependencies. At best, your package requires nothing more than
what shows up on a default implementation of a Linux enterprise distribution or the last couple
version of Mac OSX with XCode installed.

Any dependency beyond a default generic buy-in of downloading a few packages from the Apple
Store or the Red Hat Web site or from Unbuntu package management system should be an option
for your build system. As an example, we will take Chombo. Chombo runs faster on many
applications and better if you link to PETSc, but it doesn’t require it. Nor does it require PETSc
to be configured in any particular way. You can use the HPCtoolkit on Chombo, but Chombo
comes with built-in profiler that runs on all platforms. It doesn’t tell you everything. It basically
simulates gprof. You don’t have to have MPI. If you have MPI, then you can run in parallel. You
don’t have to have HDF5. If you have HDF5, then you can get high-performance 1/0. You don’t
have to have LAPACK. But if you do, more of the examples would work and so on. The point is



that a person can type make, run an executable, get some output, and see that it did anything.
And they can get there in about an hour. That builds confidence. They will start developing their
new algorithm, their new science, the next modeling capability that we want to have. If they are
also always profiling, then they will discover that they need something to run faster, and then they
will take the next step up the learning curve, adding another package and how you configure it
together and how you make them run together successfully. Each step is a measurable improvement
towards the goal of high-performance computing.

Of course all packages can be unbundled, out of the box, and perform simple tasks based on the
fact that you built a distribution. All packages have examples that demonstrate that distribution is
doing what it advertises. The point is that you should have default versions of the higher functions
in your package such that you can actually get science done without any external dependencies.
The only limitation to you achieving a scientific result with a default version of the code you are
working with should be performance. That is, you need to simulate the functionality of every
external package your code can talk to. For instance, Chombo comes with linear solvers. Chombo
comes with time integration schemes. Chombo comes with parallel file I/O. Chombo comes with
a default profiler built in. Chombo comes with mesh generation. Chombo comes with complex
geometry built in. Chombo is a complete package for doing modeling and would solve any problem
within its domain. It might not perform fast enough, but that should be your only limiting factor.
Chombo has its own Eigen solver built in for small systems. Chombo has built in dense linear
algebra systems built in. You don’t need LAPACK in your system, but it will run much faster if
you do.

So what should guide the complexity of your build configuration are your requirements for
high-performance computing. Do not make a user fish around for bits and pieces of math. There
are naive implementations of almost everything that we could provide to all our users. When the
profiler tells you something is slowing you down too much, that is the motivation to seek out a
third-party package alternative.



