
HPC Communities of Practice

Andy R. Terrel
University of Texas

Continuum Analytics, Inc
andy.terrel@gmail.com

Matthew Turk
Columbia University

ABSTRACT
Writing software for HPC systems is a task fraught with
many challenges. We argue when developed in an open com-
munity of practice, many of these challenges can be captured
and solved benefiting many. Additionally we call to the well
established rule that software for a larger community is as
a guide for building better tools.

1. INTRODUCTION
Two recent events have shaped our view on producing ac-
cessible and robust software. The first is a rant accidently
posted by Steve Yegge of Google, Inc on the state of culture
in Google versus Amazon [0]. The second is a recent report
on the extremely low bug count of the highly open refer-
ence Python interpreter [1]. Both events highlight the need
for coordination among communities to build their highly
complicated tools rather than the more traditional siloed
software teams.

Steve Yegge’s now infamous post referenced a mandate by
the CEO of Amazon to “dog-food” APIs from the platform
team. Dog-fooding, in a nutshell, is the practice forcing
the use of an alpha-stage product to find bugs and required
usability updates; by forcing teams to utilize software them-
selves for day-to-day tasks, limitations and failures are raised
to the level of critical, concrete tasks. The practice was cred-
ited as the success of the now-transformative Amazon Web
Services (AWS) being deployed and its ascendance to the de
facto standard for cloud systems. Even Globus, the back-
bone connecting our beloved HPC machines, uses it exten-
sively. While Amazon’s main source of income was selling
books, anyone would be remiss to call them a typical book-
seller – they self-describe their work more like a computer
science department. Joining resources between the concep-
tual divisions of book retail and software development, re-
sulting in a platform for selling books, provided a launching
pad for Amazon to produce tools to fuel the entire cloud
computing ecosystem. This interaction within their com-
munity can be credited with producing a broadly transfor-

SWP4ES Oct 2013, Gaithersburg, MD

mative product.

In our second example, a report by Coverity has shown the
CPython project to have an exceptionally low bug count,
fewer than 5 defects per 1000 lines of code, far below indus-
try standards. CPython is another example of communities
of practice. The CPython community is highly open and
transparent with an intentional focus of mentoring a diverse
set of contributors. The community includes mentorship and
education groups devoted to encourage more participation,
a quality rarely seen in software projects and discouraged by
Brook’s law of software engineering. The technique of en-
couraging participation in large projects is often criticized
in our community, citing challenges to publication and re-
newed funding, but this recent report provides a concrete
example of highly open practices leading to better software.

Open communities of practice do exist in HPC Software and
typically account for the largest use of hours on supercom-
puting resources. It is our belief that any pursuit of Extreme
Scientific Software would have a multiplicity of benefits by
adhering to these simple techniques of collaboration. The
techniques of dog fooding and open participation can make
HPC Software better. To this end, we highlight the Enzo
and yt communities that we have worked with and some
practical steps that can address the lack of use of this model.

2. OPEN HPC COMMUNITIES
Development can often be divided into two primary compo-
nents: development in support of a specific application and
development in support of the broader code base. Within
HPC communities, these often take the form of “library-
driven” development and “application-driven” development.
Often this division results from the individuals conducting
the definition of requirements, the design and implementa-
tion of those requirements, and the manner in which im-
provements to code are deployed to the broader community.
Typically “application-driven” development is characterized
by development in support of specific projects or grants,
and is often heavily tied to a specific publication or class
of projects; in contrast, “library” development is typically
characterized by developing without specific applications in
mind, or with broad-classes of applications in mind.

From our experiences within the HPC community, both ap-
proaches are necessary – however, for many domains of prob-
lems, “application-driven” development leads to more fo-
cused, if lower performing, libraries and a shorter “time to



science.” Furthermore, infrastructure components are often
designed by the individuals who will be applying them; this
is a hallmark of a community of practice, where uptake of
newly developed features can be quite high. The process of
dog-fooding, of application-driven development and of work-
ing practitioners guiding resources and investment of time
is characterized by a focus on utility. This is not exclu-
sively positive, as it can also lead to shortcuts, compromises
and a reinvention of existing components; however, it can
also lead to higher productivity and synergistic technology
transfer between groups.

Within the Enzo and yt communities [3], we have identified
several processes that both benefit from and also struggle
with the“need-driven development”structure encouraged by
dog-fooding. On the positive side, what we have primarily
seen is that time is spent developing features that are imme-
diately relevant to individuals and researchers – however, the
downside of this is that often, infrastructure improvements
are put off, and once they do become necessary the time re-
quired to do so comes at the expense of further short-term
development goals. As an example of this, within both Enzo
and yt scaling issues for addressing large processor counts
have long been identified; the solutions to these problems
would be invasive, but with remarkable reward for a subset
of computations. Because they require substantial commit-
ment and investment not only from one or two individuals,
but from the whole community, and also at the expense of
short-term goals, they have not yet been addressed or im-
plemented. While this may seem like a failing of the “dog-
fooding” methodology, we instead view it as a mixed bag.
It is true that longer term goals have been set aside for the
time being, but ultimately the shorter-term scientific output
from the community has not suffered; rather, the lack of in-
vasive changes has instead fostered a growing community
of individuals contributing to the code base and widening
its applicability, and ultimately forming a large enough base
of individuals to perform the necessary improvements for
longer-term development. We therefore see the goals of the
community as aligned with but not identical to the goals of
overall code improvement. While in the long term this may
lead to bottlenecks and ultimately the abandonment of ex-
isting code bases in favor of newer, different code bases, the
resource which likely bore the greatest investment (commu-
nity) can and may survive such transitions; however, it is
likely to be tested, in a much similar way to how code bases
are tested as new HPC system architectures are developed
and deployed.

3. CONCLUSION: PRACTICAL POLICIES
To conclude, our message is simple. The better the commu-
nities using Extreme Science systems the better use we will
see. By investing in policies and incentivizing communities
of practice, these machines will return many times more re-
sults than small siloed groups of PIs. Finally we list a set of
policies we would like to see incorporated in the workshops
conclusion.

1. Grant cross cutting research projects across disciplines
with both science and tool production goals.

2. Require community presence for duration of project,
i.e. blogs, mailing lists, open code repositories.

3. Support collaborations with institutes such as Software
Sustainability Institute and open source scientific soft-
ware companies.

4. Support development of social capital between projects.
For example see the DARPA XDATA program.

5. Increased focus on âĂIJlong tailâĂİ of science, bring-
ing up tools for non-experts.

4. REFERENCES
[0] Melissa Bell, Google engineer Steve Yegge has his Jerry
Maguire moment, World Views, Washington Post, Oct 14,
2013.

[1] http://www.ciol.com/ciol/news/194520/coverity-python-
sets-level-quality-source-software

[2] MJ Turk, Scaling a code in the human dimension, Pro-
ceedings of the Conference on Extreme Science and Engi-
neering Discovery Environment, 2013.


