
State of Scientific Software Stacks

Andy R. Terrel
University of Texas

Continuum Analytics, Inc
andy.terrel@gmail.com

Chris Kees
U.S. Army Engineer Research

and Development Center

Aron Ahmadia
U.S. Army Engineer Research

and Development Center

Dag Sverre Seljebotn
University of Oslo

Ondrej Certik
Los Alamos National Lab

ABSTRACT
The current state of scientific software stacks is a high bur-
den for the use of current high performance machines. With
the coming world of highly heterogeneous computing, con-
trolling the stack looks to be a much more difficult venture
than already exists. In this short position, I highlight the
problem as an experienced system administrator and scien-
tific computing developer, in both academic and industrial
settings.

1. INTRODUCTION
When using a new code or a new machine, the first task is to
install the code. The first time is usually pretty rough. One
looks through the pages of manuals (if they exist), scrolls
through screens of configuration help, and the dives into
modifying configuration files and build scripts to get to a
build failure with enough information to email the develop-
ers. Even if one gets it right, a change to a library version or
user environment can completely break the code. While su-
percomputing centers hire numerous computing experts that
install stacks, or collections of libraries that should work to-
gether, it is most often the case that they configured the
software for a different use case. In the end, it can be more
reliable to install the entire stack in user space, usually hop-
ing that only the base software, e.g., an MPI implementation
and compiler, is reliable.

There are many solutions to the problem, but none of them
are satisfactory. Perhaps the most prevalent is the use of
an environment module system. The objective of environ-
ment modules is to provide a quick way to change out differ-
ent parts of the software stack easily. Different implemen-
tations meet this objective to different degrees (and more
importantly fail to meet it in different ways). One of the
most significant flaws is that environment modules are not
idempotent in the sense that the order of module loads and
unloads can be critical. Modules also do not provide much
reasoning about the stack, e.g., if you load threaded blas
they do not know to turn threading off in your library often

SWP4ES Oct 2013, Gaithersburg, MD

causing thread oversubscription without most users under-
standing the issue.

Other solutions usually cripple the system. For example
grid software assumes a similar stack across the machines
which is almost never true. Virtualization works well for
I/O bound problems like running web servers, but has al-
ways added an extra overhead unacceptable to leadership
class machines. Package managers that do not require root
access still try to control the entire software stack losing the
advantage of vendor tuned libraries.

Industry has long avoided the problem by providing a full
stack build for their applications. In fact I can point to ten
different Python stack systems that companies use to deploy
applications. The more recent trend of virtualizing every-
thing in the cloud space again works around the problem.
The economic loss in a failed software stack can potentially
destroy major internet companies. To this end, industry
hires more people to test, deploy, and maintain stacks than
reasonable in the cash poor world of HPC software develop-
ment.

Due to this state of affairs, every HPC expert must now also
be a devop professional. When things go wrong, the com-
plexity of isolating the issues require a sophisticated view
of the entire stack. This state of affairs is unacceptable. In
the pursuit of performance portable codes on extreme sys-
tems, one must first democratize the stack to allow mere
mortals the chance of installing and running the massive
amounts of software used in scientific computing. Let us
look at a different way of managing software stacks and an
implementation that has a solid prototype working on nu-
merous architectures and HPC machines.

2. A BETTER APPROACH
The ideal software stack must incorporate many features,
be usable by novices as well as experts, and have reason-
able manual overrides. Before we consider these challenges,
consider for a moment the transition from centralized ver-
sion control systems (VCS) to distributed versions. Dis-
tributed VCS have revolutionized the open source commu-
nity, with projects like matplotlib showing an exponential
number of new contributions. This revolution was precipi-
tated by the simple switch from a stateful, registered, and
controlled management of versions to a much less regulated
and decentralized policy. Distributed systems did not make
the coding easier but made the interaction between parties



and sharing of code trivial.

The same interactions exist with our software stacks, where
all actions are dependent on hundreds of other libraries being
correctly installed. By decentralizing the software stack to
be less stateful and thereby more mutable, scientific software
becomes easier to configure, share, and reproduce results.
Additionally, just as a community is able to build off the
ease of collaboration with DVCS, a smarter, better stack
will allow users to encode knowledge of configuring libraries
in correct ways.

I put forward three key features that are not supported by
any current solution:

1. Isolated builds with dependency specification

2. System for smartly (re)configuring the entire stack

3. Use of vendor provided libraries

First by isolating the builds of software, we are able to have
multiple versions in place at any one time. This is essential
for any supercomputing facility that must manage thousands
of users with different version requirements. But, as a devel-
oper of heterogenous systems, I need versions of my software
built in optimization and debug modes, cross compiled for
hardware like Xeon Phi or linked to CUDA libraries. The
number of variants for sparse linear algebra packages alone
baffles most users. Thus isolating many builds of the same
library and using a dependency resolution system to deter-
mine which builds to include are essential for building out a
stack that is reproducible on many different architectures.

The second challenge, which is overlooked by most systems,
is to smartly change the stack based on user input. Modules
can potentially handle switching dependencies of a library,
but in truth rarely do. Examples of users incorporating
much of the knowledge required for using the resources are
numerous. Routine tasks such as changing threading lev-
els, turning on and off debug builds, optimizing different
libraries, and switching compilers or MPI implementations.
As a software developer the most challenging part of helping
users with bugs is emulating their stack to reproduce hard
to find bugs. Allowing for the easy specification of require-
ments and a smart system for determining will allow users
to configure and easily reconfigure. This feature will allow
for the reproduction of stacks as well as supporting a wide
range of architectures that extreme computing platforms are
promising.

Finally, as users of extreme systems, we must provide a
path for vendors to provide highly tuned libraries. This
is the most difficult requirement as it means that all other
libraries cannot be a canned set of scripts that only require
a minimal number of components from the machine to run.
Very few systems exist without assuming a closed world in-
stall, that is it installs and configures everything it needs for
the specified applications. Unfortunately, low level details
of machines are protected by vendors and without binary
blobs the machine does not reach their full potential. On
the otherhand, this requirement of opening a stack to build

with system installed libraries, also means the user can build
stacks on top each other, furthering the potential for collab-
oration and sharing.

3. HASHDIST - A FUNCTIONAL APPROACH
TO SOFTWARE STACKS

The problems above have existed in HPC centers for a long
time and have recently accelerated in complexity with het-
erogeneous architectures. The features outlined above have
been incorporated in a working prototype by a team of re-
searchers primarily focused on solving very large scale linear
systems, both dense and sparse, using Python as the high
level language the user interacts with. While a high level
language made the code much friendlier to the user, it must
be installed correctly to be used. After much frustration
with installing the software stack on various systems, we
have pursued a design and implementation of a more com-
plete system. While our work has a basic solution for many
different HPC machines, it has a long ways to go to evolve
into a smarter system that can handle the coming complex-
ities of exascale systems.

The design of HashDist was initially based on the disser-
tation work of Eelco Dolstra and Joachim Schiele who im-
plemented the Nix package manager. It provides a func-
tional approach of building packages. The basic mechanism
is to provide a build specification that include dependen-
cies, configuration scripts, and other necessary details. This
specification is then hashed to a build artifact and stored
in a cache. Other packages are able to refer to the package
through this hash. Hence any time a new configuration item
changes in the build specification a unique package is build.
This simple decoupling of the build of a package with the
system state allows for many more tools to be built on top
of the packages.

HashDist currently has many different build specifications
the default of which is currently named HashStack. A col-
lection of build specification produce a profile that includes
the isolated software builds into an appropriate directory
for applications to link. This allows for a user to switch
build specifications and have a single command that builds
the necessary software and link to the parts already in the
stack.

A system for the smart configuration system that is able
to reason about the entire stack has yet to be built, but is
necessary for supporting new exascale systems.

HashDist and HashStack are both open source libraries that
can be found at https://github.com/hashdist.

4. ACKNOWLEDGEMENTS
The HashDist team includes the following contributors, in
alphabetical order: Aron Ahmadia, Ondrej Certik, Chris
Kees, Fernando Perez, Dag Sverre Seljebotn, and Andy Ter-
rel

HashDist has been funded by the U.S. Army Engineer Re-
search and Development Center.


