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1 Introduction

I/O research over the last several decades has identi-
fied a substantial and growing gap between the rate
an application can generate data and the rate the
storage system can consume it [4, 5]. At Exascale,
with a projected storage system rate of 60 TB/s [1],
the I/O system throughput will be less than 1% of
the generating capacity of a large-scale simulation.
These trends will have a direct impact on the way
computational scientists integrate analysis and visu-
alization into their application workflow. The result
is an evolution away from application workflows that
consist of sequences of independent simulation and
analysis steps that store transient results in a storage
system, to integrated approaches that perform these
steps concurrently.

Figure 1 shows three types of application work-
flows used to integrate simulation and analysis. A
traditional post-processing workflow involves storing
simulation results to disk and later retrieving them
for visualization and data analysis. At at Exascale,
post-processing approaches will not be able to cap-
ture the volume or granularity of data necessary for
analysis of these extreme-scale simulations.

In situ analysis embeds analysis into the simula-
tion code, either through code-specific operations, or
by incorporating a separate library. In this case,
analysis executes on the same compute resources as
the simulation, making it easy to deploy and allow-
ing for dual use (if implemented) of key application
data structures. Depending on the complexity of the
analysis code, however, in situ approaches may have
substantial memory, computation, and communica-
tion requirements and could create stability, scalabil-
ity, and resilience issues for highly-tuned production
codes.

In transit analysis offloads the analysis operation
onto a separate partition of compute resources, using
the high-speed network rather than the file system
for communication. This approach requires a thin
client library to aggregate and communicate impor-
tant data structures to the VDA service, effectively
creating a parallel pipeline that allows overlap of sim-
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Figure 1: Traditional and emerging workflow dia-
grams showing the flow of information from simula-
tion to persistent storage.

ulation and analysis. Although this approach is less
intrusive than in situ approaches, it requires addi-
tional compute resources and is more complicated to
coordinate the allocation and execution of an appli-
cation and a service.

Use cases for integrated simulation and analysis
are numerous, including real-time fragment detec-
tion for a shock physics code [7], a Quantum Monte
Carlo (QMC) code coupled with a a service to gener-
ate observables in a different coordinate system, the
Pixie3D magnetohydrodynamics (MHD) code cou-
pled to PixiePlot and ParaView [?], and perhaps most
compelling, the CASL code for simulating light water
reactors that couples numerous physics and analysis
codes [8].

In the remainder of this paper, we outline the key
challenges associated with supporting integrated sim-
ulation and analysis in a production environment.
Then we propose an R&D path forward that ad-
dresses these challenges in a way that complements
existing ASCR efforts.
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2 Productivity Challenges

Although a number of ad hoc approaches exist for
integrating simulation and analysis [9, 3, 7], there are
a number of challenges that hinder their use as an
effective solution in a production HPC environment.
The following list identifies a few of these challenges.

Inadequate Runtime Environment: One of the
fundamental challenges that hinder the potential
value of application workflows is the runtime en-
vironment. For decades, capability-class systems
have used a batch-scheduled model for execution
that does not allow dynamic expansion or con-
traction of an allocation, sharing a node between
executables, control over topological placement,
or connecting to existing jobs – all features that
could be utilized for integrating analysis and sim-
ulation.

Incompatible Configuration Environment:
Another productivity issue hindering integrated
simulation and analysis is the complexity of the
build and configure environment. Since it is
often the case that the analysis and simulation
come from two different code basese, there are
often mismatches in configuration tools (e.g.,
CMake, autotools), required versions of third-
party libraries (TPLs), supported compilers,
and conflicts in compiler optimizations.

Mechanisms for Sharing Data: Sharing data
structures between the simulation and analysis
code is another challenge for integration. If the
simulation treats analysis as a “black box” there
must be a duplicate copy of the data being
analyzed. For in situ methods, this doubles the
required memory. Even for in transit, there is
a substantial memory burden to serialize data
into a buffer before transport to the analysis
service.

Portable Inter-Application Communication:
Every HPC system has an implementation of
MPI for intra-application communication, but
there are no portable interfaces for the type of
intra-application communication that is required
for in transit analysis. Researchers generally
implement their own API (e.g., Nessie [6],
Mercury [10]) on top of the proprietary APIs
like uGNI (Cray), DCMF (IBM), or InfiniBand.
A portable, standard, API would accelerate and
broaden the use of in transit approaches.

3 Addressing Challenges

Recently awarded ASCR projects such as Hobbes and
ARGO are directly addressing some of the OS and
runtime issues identified in the previous section; how-
ever, the goal of those projects is to develop run-
times that support application composition. There
is still a need for complimentary projects that push
the boundaries of the application-composition model
by developing libraries and applications that lever-
age expansion/contraction for dynamic load balanc-
ing, inter-node interfaces for data sharing, and intra-
application communication interfaces that allow for
RPC, pipeline, and event-based programming mod-
els. While developing the supporting OS/R is in the
scope of the existing ASCR projects, the tools to eval-
uate and enhance the productivity of these tools is
not.

Although there has been some good progress on
meta-configuration tools like the TriBITS tool used
for Trilinos [2], there is still much work to do to sim-
plify this process and make it a widely used and pro-
ductive tool. For example, modularization to config-
ure and build precisely what is required by the sim-
ulation or analysis code is still a challenge. Given
the complexity of some of the analysis workflows and
code-coupling projects, there is a clear benefit to us-
ing an in transit approach where components are con-
nected through a network, not a library. This allows
the independent configuration of the workflow com-
ponents, as long as the networking protocol for con-
necting the executables is supported by both.

Finally, to address the data-sharing issue, there
needs to be a concerted effort to use a common set of
parallel data structures useful for both analysis and
simulation codes. In cases where there is a near ex-
act match in the data layout, this will enable direct
use of data structures within the simulation, saving
memory and performance. In cases where there is
not an exact match, the data structure descriptions
will be sufficient to enable minimal-copy adaptors to
convert from one structure to the other. Both ap-
proaches will greatly simplify the integration of in situ
and in transit approaches. In addition to addressing
commonalities in data-structure design, there needs
to be mechanisms for perhaps versioning data struc-
tures to enable the asynchronous execution of in situ
analysis and simulation computation. We encourage
an exploration of methods that minimize duplication
of data, e.g., copy-on-write.
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