
Improving Software Productivity for
Extreme-scale Systems with DSLs

John Mellor-Crummey, Rice University, johnmc@rice.edu

Today’s programming models require application developers to express algorithms at a level that
is unsuitable for mapping efficiently to a wide variety of architectures. For example, to make efficient
use of GPU accelerators on Titan today, application developers may choose CUDA. However, for
homogeneous multicore architectures such as Blue Gene/Q, CUDA is unsupported. Similarly,
programs written using OpenMP for Blue Gene/Q don’t readily map to accelerators. The problem
is that when programs are expressed in any of these forms, too many decisions about control have
already been encoded in the program.

Key aspects of today’s platforms that impede developing portable extreme-scale software are
increasingly deep memory hierarchies with varied characteristics (e.g., levels of cache, prefetching
support, NUMA vs. UMA organization, separate memory spaces for CPU and GPU, scratchpad),
differences between cores and hardware threads, varied kinds of accelerators (e.g., Intel Xeon Phi vs.
GPU) with different programming models, multiple programming models for a single accelerator
(e.g., offload vs. symmetric vs. accelerator-only), multiple accelerators, and multiple kinds of
accelerators. For platforms with multiple memory spaces, deciding how to partition data and
computation (e.g., between CPU and GPU spaces) requires feedback-directed optimization to make
the best choice.

To maximize application-developer productivity, calculations should be expressed in the most
abstract form that is explicit enough to readily map to a computational platform. While ex-
pressing problems using PDEs might be nice, many details such as their discretization or solution
technique are needed to specify a concrete computation. Domain-specific languages offer a path
to extreme-scale software based on using automated code transformation to shift the burden of
portable performance from the application programmer to the compiler. Two chief properties con-
tribute: DSLs permit expression at a high level of abstraction so that the programmer’s intent is
clear to the compiler, and DSL implementations encapsulate human domain-specific optimization
knowledge so that the compiler can be smart enough to achieve good results on specific hardware.
It is precisely domain specificity which make these properties possible in a programming language.
However, the corollary is that many different DSLs will be needed to encompass the full range of
applications for extreme-scale systems; moreover, a single application may well need to use several
different DSLs.

The promise of DSLs has been amply demonstrated by the success of at least a dozen DSLs
for scientific computing (e.g., Liszt, the Tensor Contraction Engine, and SPIRAL). Consequently,
interest in DSLs for HPC has increased in recent years as evidenced by publications, workshops,
and conferences. However, widespread adoption of DSLs is hindered by major implementation
challenges. First, it takes a large effort to implement even a small programming language. Most
commonly used implementation techniques support only part of the effort, such as parsing or in-
terpretation (e.g., ANTLR), while leaving difficult tasks, such as semantic analysis, optimization,
and code generation, to be implemented manually. Second, most techniques support only restricted
forms of DSL, omitting such desirable characteristics as custom concrete syntax, custom control
structures, the ability to interleave DSL and conventional code or multiple DSLs in the same file, or
the ability to call conventional libraries in DSL code. Third, most techniques produce implemen-
tations which are markedly inferior to conventional compilers, omitting important features such
as thorough semantic checking, global optimization of DSL code, optimization across boundaries
between DSL and conventional code or between multiple DSLs, and debugging and profiling com-
piled code at the DSL source level. Recently a few authors have shown how to avoid most of these

1



limitations using functional host languages (e.g. Haskell [?], Scala [?]); however, that work is not
applicable to common high performance computing languages (e.g. Fortran, C++, Python).

Application developers will gradually refactor parts of legacy codes on demand to take better
advantage of extreme-scale systems. High quality performance tools should be used to identify
program regions with the biggest potential for improvement with rewriting, either by identify-
ing scalability bottlenecks (e.g., insufficient thread-level parallelism, load imbalance, or bandwidth
saturation), inefficient resource utilization (e.g., insufficient instruction-level or vector parallelism,
excessive exposed memory latency), inefficient energy-proportional execution, excessive power con-
sumption, or other inefficiency metrics.

To summarize, the key challenges for using a DSL-based approach to achieve performance
portability across extreme-scale architectures include:

• Compiler infrastructure for parsing, analysis, transformation, and code generation for domain-
specific languages

• Compiler infrastructure for refactoring legacy programs

• A broad range of parameterized compiler transformations and code generation strategies. It
will be impossible to achieve top performance on any given architecture without explicitly
tailoring generated code to exploit the strengths of a target architecture (e.g., long vectors,
many lightweight hardware threads, large cache) and avoid its weaknesses (e.g., low bandwidth
between separate memory spaces, low bandwidth to main memory, inefficient mechanisms for
inter-thread synchronization).

• Detailed performance models for heterogeneous architectures to help guide code generation.
The aforementioned code generation strategies will need to know which the parameterized
code shapes needed (e.g., single-level or multi-level tiling) and the appropriate parameter
settings to target a resource (e.g., cache line size, cache size, TLB size, etc.).

• Performance tools that

– help DSL developers identify key opportunities and impediments to code performance
on a particular target architecture,

– assess the effectiveness of program transformations for helping map a DSL code fragment
efficiently onto a particular target machine,

– assess the end-to-end quality of a code region rewritten as a DSL.

Acknowledgments

This white paper was prepared with input from Michael Fagan and Scott Warren.

2


