
Applying Appropriate Software Engineering to Exascale Software Development

Jeffrey C. Carver
University of Alabama

carver@cs.ua.edu

George K. Thiruvathukal

Loyola University Chicago
gkt@cs.luc.edu

Introduction

Over the past 10 years, we have been working alongside computational scientists and engineers to
identify and apply the most appropriate software engineering principles to the development of
computational software. This position paper addresses two of the main directions of this work: 1) A
series of workshops focused on “Software Engineering for Computational Science and Engineering” and
2) An argument that appropriately applied Software Engineering does not need to be difficult.

Overview of Previous Work

Carver has been the primary organizer, along with a number of co-organizers, of a workshop series
focused on Software Engineering for Computational Science & Engineering. While this workshop has not
focused exclusively on exascale computing, many of the issues raised during the workshop and in the
associated papers are applicable to the exascale software development problem. Over the years the
workshop attendees have focused the discussion on a number of important issues, two of which are
summarized as follows. Additional summaries of the workshops and the discussions have been
published elsewhere [1-3].

One of the most important issues that appears repeatedly during the workshop discussions is the
presence of communication problems between traditional software engineers and scientific software
developers. Both software engineers and scientific software developers can assume some of the blame
for this problem. From the software engineers’ side, we often have not taken the time to adequately
understand the constraints of the computational (or HPC) environment before proposing solutions. In
many cases, some of the traditional software engineering concepts must be tailored to appropriately fit
within the constraints of a given context. From the computational software developers’ side, in many
cases teams are not willing to acknowledge the need for software engineering until they encounter
problems, at which point it may be too late. I will revisit this point in the next section.

A second, but closely related issue, is the need for examples of successful application of software
engineering principles to computational software. Understandably, most computational developers are
not willing to experiment with new software development tools or approaches without some confidence
that the approach will prove beneficial for them. My experience shows that the best way to provide this
type of confidence is to illustrate the successful use of software engineering on a similar project. Of
course, there is the issue of where one finds the first such project to show success. In other words, we
have the chicken and the egg problem. There is a need for computational teams to be willing to make
use of appropriately tailored software engineering tools and techniques to address the key software
development problems they are facing. Once this culture begins, it will be easier to convince other
developers to use similar approaches.

Software Engineering Need Not Be Difficult (excepts from a paper submitted to the 2013
SuperComputing Workshop on Sustainable Software for Science: Practice and Experiences)

To address one of the underlying issues that has surfaced both in the workshops, as described
above, and in our own personal interactions with various computational developers, we have found a
common, and often incorrect perception that software engineering has to, by definition, include only
practices that are extensive, process-heavy and span the development lifecycle. Conversely, we argue
that Software Engineering should be viewed more from the perspective of Agile Software Engineering.
That is, rather than being a “big book of processes that must all be followed without deviation,” software
engineering is a collection of practices that can be tailored and applied as appropriate.

Based on our experiences, we realize that software engineering practices are only needed to the
degree at which they are helpful to a particular project. That is, we are not advocating that all teams
should necessarily follow all software engineering practices at all times. That said, we have also
observed that many scientific/engineering projects discover that software engineering practices are
necessary only after they have encountered a problem that cannot be easily solved through their normal
development process. This situation often arises when the source of the problem is the people rather

mailto:carver@cs.ua.edu
mailto:gkt@cs.luc.edu

than the technology. For example, project management issues become increasingly important as project
team size grows. In such cases, software engineering is typically an afterthought rather than a
forethought. Trying to add software engineering practices late in a project, one a problem becomes
evident, tends to be more difficult and expensive than adding them early. Although, early introduction
means that teams must be willing to pay additional costs early to reap the benefits later.

In our experiences interacting with various scientific teams, we have observed a number of
lightweight software engineering practices being employed. These practices all serve to make the
software more sustainable either by operating directly on the code or by operating on the development
process through the addition of structure. A common feature among these practices is the ease with
which they can be added to existing processes.

- Source code management (a.k.a. version control) through Distributed Version Control Systems
(Mercurial and Git) in the cloud allow teams to manage the evolution of the software and easily
maintain multiple experimental and production versions as necessary.

- Wikis that provide lightweight documentation of the software (e.g. Google Sites, wiki provided by
DVCS hosting solutions such as Bitbucket and GitHub)

- Issue tracking using cloud-based or open-source tools allows teams to track defects that must
be fixed and features that must be added to the software.

- Automatic build and release management using continuous integration systems and/or build
farms that simplify the process of building and releasing the software so those steps can be
performed more frequently.

- Project management, i.e. lightweight task trackers like Trello (www.trello.com). We've talked
about this trend in previous work 3.

In addition to those practices, we have a second list of practices that we have seen much more
infrequently (if at all) with our scientific collaborators. This next list serves more as a “wish list” of
practices that we would like to see more computational teams consider including in their processes.

 Unit testing: Whether or not the development language has a unit-testing framework, unit
testing is a very effective practice for constructing large-scale software, especially when using
object-oriented languages. Nevertheless, there are C projects that have shown how to do unit
testing effectively in a more ad hoc manner (e.g. the MPICH project) by running unit tests as
processes whose results are checked in the shell, which has support for success/failure testing.

 Test Driven Development (TDD): Using unit testing, TDD integrates the testing and
development activities by requiring developers to write unit tests prior to writing any code. In
practice, this approach does create a bit more work for the developer initially, but provides a
good set of unit tests that can evolve with the project. In our own projects, it is incredible how
many coding errors (when revising) can be caught by well-crafted unit tests.

 High-level Requirements: Nobody particularly likes writing documentation. Full requirements
specifications are overkill, but using a wiki to document the key ideas and use-cases that went
into creating software in the first place can help projects remain coherent. Piling on features that
have nothing to do with the initial rationale for a project result in bloatware that will ultimately be
displaced by simpler and more focused solutions.

 Metrics: By providing insight into the real development problems, appropriate metrics can have
immediate impact on the development process. (e.g. defect density and issues reported with
respect to time are almost trivial to incorporate in projects using an infrastructure like GitHub.

 Code review: Many types of bugs can be more easily detected through peer code review than
through extensive testing. There may be some resistance from developers who consider
themselves to be strong coders, but even the best coders make mistakes.

References
[1] J. C. Carver, “First international workshop on software engineering for computational science &
engineering,” Computing in Science and Engineering, vol. 11, no. 2, pp. 7–11, March/April 2009.
[2] J.C. Carver, “Report from the second international workshop on software engineering for
computational science and engineering (se-cse09),” Computing in Science and Engineering, vol. 11, no.
6, pp. 14–19, 2009.
[3] J.C. Carver, “Software engineering for computational science and engineering,” Computing in
Science & Engineering, vol. 14, no. 2, pp. 8–11, 2012.

