
Software as “Instrumentation” for Computational Research

a position paper for the Software Productivity for Extreme-Scale Science (SWP4XS) Workshop, by

David E. Bernholdt
Oak Ridge National Laboratory

bernholdtde@ornl.gov

Scientific user facilities are a well-established approach to providing communities of researchers with
access to exceptional capabilities that would be beyond the abilities of any one research group to develop
and maintain.1 For example the exceptional capability provided by the Spallation Neutron Source (SNS)
at ORNL is an intense, pulsed beam of neutrons. The facility also provides sixteen different instruments,
specifically designed and built for the SNS, which allow users of the facility to do particular experiments
with those neutrons. In a computational facility (i.e. ALCF, NERSC, or OLCF), the exceptional
capabilities are, fundamentally, computer cycles (with a concept of scale that distinguishes capability
from capacity facilities). And the computational science applications that run on the system are
analogous to the instruments in an experimental facility. But how complete is that analogy, and do we
need to make it better?
Like most of the instruments one finds at experimental user facilities, computational science software is
typically at least somewhat specialized to the facility.2 Like most instruments, large-scale computational
science software is typically the result of a substantial, long-term R&D activity carried out by a team of
researchers and technicians (as opposed to a single “hero” programmer (instrument-maker)). Many
computational science software packages serve not just an individual researcher or research group, but
whole communities of researchers, just as the instruments of a user facility do. In both cases, there are
often two distinct groups of people associated with the software (instrument): those who design and
develop it, and those who use it for their scientific research. In both cases, these groups may overlap, but
as the size and complexity of the software (instrument) increases, the two groups are likely to be
increasingly distinct. The more complex the software (instrument) is, the more likely its design and
development are to be a publication- and discovery-generating R&D process in its own right.
But there are important differences too, especially in the ways the two types of projects are typically
managed and funded. Instruments in an experimental facility are typically treated as major projects in
their own right, with a complete lifecycle and comprehensive funding plan. Software, on the other hand,
rarely works this way. A common quip in computational science and engineering (CSE) circles, often
stated with a perverse pride, is that our sponsors fund us to publish papers, not produce software. This
simple comment has many implications for the development of software. First of all, if the sponsors do
not value software as a distinct long-lived product of research, it will be hard for many of the researchers
involved in creating and using it to value it. Those who do will still have to work around the system to
accomplish their goals for the software “surreptitiously.” Funding for the activity will often have to be
pieced together from multiple projects over time. Larger development teams may require multiple
concurrent projects as well, with all of the additional challenges that entails. Planning for the lifecycle of
the software is far more challenging, and may even be discouraged by such an environment. The situation
becomes even more complicated if the software has a non-trivial user base distinct from the developers.
These users will have their own ideas of what software features and capabilities are important to them,
which can have major implications for both development and maintenance of the software.

1 The DOE Office of Science, for example, is steward to twenty-six experimental user facilities, as well as four
computationally-oriented facilities (NERSC, ALCF, OLCF, and ESnet).
2 There is, of course, a fundamental difference in the inherent portability of digital versus physics goods. But it is
nevertheless common for HPC software to incorporate platform-specific optimizations in pursuit of higher
performance.

The point of this comparison is not to suggest that the pursuit of good computational science and good
software are mutually exclusive, but rather that our approach to funding these activities, and their
relationship to each other, could stand re-examination and discussion within the community. Some of the
relevant questions are:

• Can computational science communities get to where they want and need to be with the current
science-first approach as the primary funding model?

• Should large-scale scientific software be treated more like experimental instruments, both by
funding agencies and by the researcher/developers?

• If changes are needed, how can we institute them? Is changing the funding model necessary?
Sufficient? Do we need to change the thinking of peer reviewers of grant proposals? If so, how?

• Are research leaders prepared to follow changes in the funding model, or are they too wedded to
the science-first model to accept changes easily?

• Does the current reward system in academic and national laboratory science provide appropriate
recognition of the production of software as opposed to “science” (papers)? If not, what changes
are needed? How could they be instituted?

