DOE ASCR Workshop on Software Productivity for eXtreme-scale Science (SWP4XS)
Position Paper on Testing and V&V
Ivan Bermejo-Moreno,
Center for Turbulence Research, Stanford University
ibermejo@stanford.edu

An important issue in current supercomputing platforms is the reduced or null availability of resources
dedicated to testing in the production environment. Traditionally, such production environment has not
been needed for the completion of the majority, if not all, of the system and regression tests designed to
ensure the quality of most software applications. Instead, system and regression tests are generally
performed in a small replica of the production environment dedicated to development, which provides
a much quicker turnover time (e.g., shorter queues and simplified job submission protocols) and likely
supports integration with automated testing practices.

However, as we move to exascale platforms, hardware resiliency and reliability will play a critical role
in the failure modes encountered during program execution. Software recovery from such hardware
failures based on the dynamic re-allocation of available resources at execution time will be key to
ensure successful use of these supercomputers. System and regression tests that target these
resiliency/reliability issues will have to be specifically designed and incorporated in the standard
testing suites of every software package planning to use such supercomputers. Some of these hardware
failures can be artificially simulated by wrapping the software execution in embedded virtual
environments that trigger, often at the software level, the same system exceptions to be caught by the
libraries overseeing the application recovery, whether it is through distributed checkpointing, recovery
blocks (Randell 1975), containment domains (Chung et al. 2012), etc. Nevertheless, proper failure
detection and recovery of an application, in several instances of execution, will require tests that
involve all the hierarchical hardware elements of the cluster at the production scale, even if failures are
simulated through controlled triggering environments.

A dual mode of regression testing will likely be needed in these extreme-scale computing systems. The
base component of the testing suite will still use the commonly available replica clusters, currently
meant for development, for those tests that are independent of the cluster scale. However, a subset of
the tests will need to be moved to the production environment. This scenario poses new challenges
from different standpoints. First, the availability of time slots for such system and regression tests to be
shared by the multiple users of the clusters will need to be addressed in a way that minimizes the
impact on the production runs, likely following the maintenance windows that are currently scheduled
in these systems. Second, the automation of the complete testing procedures will be more complex, as
it needs to ensure the periodic submission of tests to coincide with the available window, accounting
for the limited execution time adequate to accommodate the needs of all users sharing the clusters, as
well as a compatible infrastructure for reporting the testing results to centralized/distributed servers
located out of the extreme-scale computing facilities, so that they can be integrated with reports from
other clusters and provide the developers with complete information of the software status.

Whereas regression tests might be typically executed automatically with daily frequency in dedicated
computing resources, the limited availability of the production exascale system for testing will have an
impact not only on the frequency of testing (likely weekly, at most) but also on the number of tests that
can be run per software per allocation. This will translate in a need for limiting the number of
regression tests executed in each session following an adequate strategy fo the selection of tests that
ensures the highest confidence in the testing results (see Graves et al. 2001), also likely employing
rotation schemes for the selection process in subsequent sessions.



Finally, physics-based simulators and data-analysis applications are expected to become progressively
more coupled into concurrent, on-the-fly work-flows in high-performance computing (Docan et al.
2010), for example, to avoid impractical storage requirements of simulation-generated data for
subsequent postprocessing, a pattern commonly applied in today's computing practices. Such tight
interaction of simulators and data-analysis will necessitate higher levels of testing. Furthermore,
addressing hardware resiliency and reliability through system and regression testing in such coupled
execution will involve extended domains and software hierarchies to consider in the implementation of
super-application recovering strategies.

Several of our simulation and postprocessing software packages developed at the Center for
Turbulence Research, Stanford University, rely on integrated development environments created with
principles of Continuous Integration (CI) in mind by combining existing open-source solutions.
Automated testing is a vital component of such environment to ensure the quality of the software as
usage and development occurs concurrently in a variety of clusters both in-house and at several
computing facilities in the National Laboratories. The objective is to provide robustness and ease the
cross-platform deployment through standardized installation procedures (such as the use of toolchain
files) targeted to each platform, as well as by automating the tests execution and submission of testing
results, so that early detection of problems in the software is guaranteed. For compatibility with
common software packages available in the supercomputers that we currently access, we have adopted
a combination of CMake (http://www.cmake.org/), CDash and our own meta-language for higher-level
testing based on Python, all interfaced with the distributed version control system git (http://www.git-
scm.com/). These elements represent a subset of the integrated development enviroment. We plan to
extend such environment, particularly the Python-based meta-language for testing concurrent multi-
application execution in the path to exascale computing.

References.

C. Docan, M. Parashar and S. Klasky “DataSpaces: An Interaction and Coordination Framework for
Coupled Simulation Workflows” HPDC'10, June 20-25, 2010, Chicago, Illinois, USA.

J. Chung, I. Lee, M. Sullivan, J.H. Ryoo, D. W. Kim, D. H. Yoon, L. Kaplan, and M. Erez
“Containment Domains: A Scalable, Efficient, and Flexible Resilience Scheme for Exascale Systems.”
In the Proceedings of SC’12. November, 2012

A. Geist, and R. Lucas “Whitepaper on the Major Computer Science Challenges at Exascale,” February
2009

T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter , G. Rothermel “An Empirical Study of Regression
Test Selection Techniques”, ACM Transactions on Software Engineering and Methodology, Vol. 10,
No. 2, April 2001.

B. Randell, “System structure for software fault tolerance,” in Proceedings of the international
conference on Reliable software. New York, NY, USA: ACM, 1975, pp. 437-449.


http://www.cmake.org/
http://www.git-scm.com/
http://www.git-scm.com/

