
DOE ASCR Workshop on Software Productivity for eXtreme-scale Science (SWP4XS)
Position Paper on Testing and V&V

Iván Bermejo-Moreno,
Center for Turbulence Research, Stanford University

ibermejo@stanford.edu

An important issue in current supercomputing platforms is the reduced or null availability of resources 
dedicated to testing in the production environment. Traditionally, such production environment has not 
been needed for the completion of the majority, if not all, of the system and regression tests designed to 
ensure the quality of most software applications. Instead, system and regression tests are generally 
performed in a small replica of the production environment dedicated to development, which provides 
a much quicker turnover time (e.g., shorter queues and simplified job submission protocols) and likely 
supports integration with automated testing practices.

However, as we move to exascale platforms, hardware resiliency and reliability will play a critical role 
in the failure modes encountered during program execution. Software recovery from such hardware 
failures based on the dynamic re-allocation of available resources at execution time will be key to 
ensure successful use of these supercomputers. System and regression tests that target these 
resiliency/reliability issues will have to be specifically designed and incorporated in the standard 
testing suites of every software package planning to use such supercomputers. Some of these hardware 
failures can be artificially simulated by wrapping the software execution in embedded virtual 
environments that trigger, often at the software level, the same system exceptions to be caught by the 
libraries overseeing the application recovery, whether it is through distributed checkpointing, recovery 
blocks (Randell 1975), containment domains (Chung et al. 2012), etc. Nevertheless, proper failure 
detection and recovery of an application, in several instances of execution, will require tests that 
involve all the hierarchical hardware elements of the cluster at the production scale, even if failures are 
simulated through controlled triggering environments.

A dual mode of regression testing will likely be needed in these extreme-scale computing systems. The 
base component of the testing suite will still use the commonly available replica clusters, currently 
meant for development, for those tests that are independent of the cluster scale. However, a subset of 
the tests will need to be moved to the production environment. This scenario poses new challenges 
from different standpoints. First, the availability of time slots for such system and regression tests to be 
shared by the multiple users of the clusters will need to be addressed in a way that minimizes the 
impact on the production runs, likely following the maintenance windows that are currently scheduled 
in these systems. Second, the automation of the complete testing procedures will be more complex, as 
it needs to ensure the periodic submission of tests to coincide with the available window, accounting 
for the limited execution time adequate to accommodate the needs of all users sharing the clusters, as 
well as a compatible infrastructure for reporting the testing results to centralized/distributed servers 
located out of the extreme-scale computing facilities, so that they can be integrated with reports from 
other clusters and provide the developers with complete information of the software status.

Whereas regression tests might be typically executed automatically with daily frequency in dedicated 
computing resources, the limited availability of the production exascale system for testing will have an 
impact not only on the frequency of testing (likely weekly, at most) but also on the number of tests that 
can be run per software per allocation. This will translate in a need for limiting the number of 
regression tests executed in each session following an adequate strategy fo the selection of tests that 
ensures the highest confidence in the testing results (see Graves et al. 2001), also likely employing 
rotation schemes for the selection process in subsequent sessions.



Finally, physics-based simulators and data-analysis applications are expected to become progressively 
more coupled into concurrent, on-the-fly work-flows in high-performance computing (Docan et al. 
2010), for example, to avoid impractical storage requirements of simulation-generated data for 
subsequent postprocessing, a pattern commonly applied in today's computing practices. Such tight 
interaction of simulators and data-analysis will necessitate higher levels of testing. Furthermore, 
addressing hardware resiliency and reliability through system and regression testing in such coupled 
execution will involve extended domains and software hierarchies to consider in the implementation of 
super-application recovering strategies.

Several of our simulation and postprocessing software packages developed at the Center for 
Turbulence Research, Stanford University, rely on integrated development environments created with 
principles of Continuous Integration (CI) in mind by combining existing open-source solutions. 
Automated testing is a vital component of such environment to ensure the quality of the software as 
usage and development occurs concurrently in a variety of clusters both in-house and at several 
computing facilities in the National Laboratories. The objective is to provide robustness and ease the 
cross-platform deployment through standardized installation procedures (such as the use of toolchain 
files) targeted to each platform, as well as by automating the tests execution and submission of testing 
results, so that early detection of problems in the software is guaranteed. For compatibility with 
common software packages available in the supercomputers that we currently access, we have adopted 
a combination of CMake (http://www.cmake.org/), CDash and our own meta-language for higher-level 
testing based on Python, all interfaced with the distributed version control system git (http://www.git-
scm.com/). These elements represent a subset of the integrated development enviroment. We plan to 
extend such environment, particularly the Python-based meta-language for testing concurrent multi-
application execution in the path to exascale computing.

References.

C. Docan, M. Parashar and S. Klasky “DataSpaces: An Interaction and Coordination Framework for 
Coupled Simulation Workflows” HPDC'10, June 20–25, 2010, Chicago, Illinois, USA.

J. Chung, I. Lee, M. Sullivan, J.H. Ryoo, D. W. Kim, D. H. Yoon, L. Kaplan, and M. Erez 
“Containment Domains: A Scalable, Efficient, and Flexible Resilience Scheme for Exascale Systems.” 
In the Proceedings of SC’12. November, 2012

A. Geist, and R. Lucas “Whitepaper on the Major Computer Science Challenges at Exascale,” February 
2009

T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter , G. Rothermel “An Empirical Study of Regression 
Test Selection Techniques”, ACM Transactions on Software Engineering and Methodology, Vol. 10, 
No. 2, April 2001.

B. Randell, “System structure for software fault tolerance,” in Proceedings of the international 
conference on Reliable software. New York, NY, USA: ACM, 1975, pp. 437–449.

http://www.cmake.org/
http://www.git-scm.com/
http://www.git-scm.com/

