Scidac 2015 progress: Advanced Modeling of ions in solutions, on surfaces, and in biological environments

Princeton University: **Roberto Car (PI)**, Weinan E Temple University: Mike Klein, **Xifan Wu (presenting)** LBL: Esmond Ng, Chao Yang, Lin Lin

Lawrence Berkeley

lational Laboratory

Outline

Part I. Projects

- Proton transfer of OH- and H3O+ in an accurately modeled H-bond network
- > X-ray absorption spectra in liquid water by advanced modeling

Part II. Progress of our team members at LBL

Part III. Other performed projects and introduction of our posters

PT in H₃O⁺ through structural diffusion

PT in OH⁻ through structural diffusion

Proton Transfer mechanism in H₃O⁺

Zundel cation

Three controversial mechanisms for hydroxide OH-

Proton Transfer through hydronium and hydroxide

Three controversial mechanisms for hydroxide OH-

Why controversial?

- All three scenarios can be theoretically obtained by GGA functional
- BLYP predicts a qualitatively correct picture, but ions diffuse too slow
- The H-bond by BLYP is known to be over-structured
- 1. Tuckerman, M. E.; Chandra, A.; Marx, D. J. Chem. Phys. 133, 124108 (2010)
- 2. Tuckerman, M. E.; Chandra, A.; Marx, D. Chem. Rev. 2010, 110, 2174
- 3. Milles, R. J. Phys. Chem., 1973, 77, 685
- 4. Halle, B.; Karlstrom, G. J. Chem. Soc., Faraday Trans. 2 1983, 70, 1031

Proton Transfer through hydronium and hydroxide: Current controversy

R. DiStasio et al, J. Chem. Phys. 141, 084502 (2014)

Diffusion

Diffusion Coefficient (10 ⁻⁹ m ² /s)	BLYP ¹	PBE	PBE vdW	PBE0 vdW	Exp. ^{2, 3, 4}
OH-	1.92	16.4	14.0	3.90	3.12
H ₃ O+	2.83	9.78	11.4	8.15	6.69
$D(OH^{-})/D(H_{3}O^{+})$	0.68	1.7	1.2	0.48	0.47

Proton Transfer rate (per picosecond)

PT rate	PBE	PBE vdW	PBE0 vdW
OH-	2.92	2.26	0.607
H₃O⁺	2.06	2.78	1.90

- 1. Tuckerman, M. E.; Chandra, A.; Marx, D. J. Chem. Phys. 133, 124108 (2010)
- 2. Tuckerman, M. E.; Chandra, A.; Marx, D. Chem. Rev. 2010, 110, 2174
- 3. Milles, R. J. Phys. Chem., 1973, 77, 685
- 4. Halle, B.; Karlstrom, G. J. Chem. Soc., Faraday Trans. 2 1983, 70, 1031

OH-

Three controversial mechanisms for hydroxide OH-

OH-

Presolvation structure of PT in OH-:

- Complex receiving the proton
- Resembling water
- Must change from hypercoordination to tetrahedral like

Diffusion Coefficient (10 ⁻⁹ m ² /s)	BLYP ¹	PBE	PBE vdW	PBE0 vdW	Exp. ^{2, 3, 4}
OH-	1.92	16.4	14.0	3.90	3.12

- 1. Tuckerman, M. E.; Chandra, A.; Marx, D. J. Chem. Phys. 133, 124108 (2010)
- 2. Tuckerman, M. E.; Chandra, A.; Marx, D. Chem. Rev. 2010, 110, 2174
- 3. Milles, R. J. Phys. Chem., 1973, 77, 685
- Halle, B.; Karlstrom, G. J. Chem. Soc., Faraday Trans. 2 1983, 70, 1031

Proton Transfer of OH-: Presolvation structure

- 3. Milles, R. J. Phys. Chem., 1973, 77, 685
- 4. Halle, B.; Karlstrom, G. J. Chem. Soc., Faraday Trans. 2 1983, 70, 1031

Diffusion Coefficient (10 ⁻⁹ m ² /s)	BLYP ¹	PBE	PBE vdW	PBE0 vdW	Exp. ^{2, 3, 4}
OH-	1.92	16.4	14.0	3.90	3.12

Proton Transfer with accurately modeled H-bond network

OH-

Diffusion Coefficient (10 ⁻⁹ m ² /s)	BLYP ¹	PBE	PBE vdW	PBE0 vdW	Exp. ^{2, 3, 4}
OH-	1.92	16.4	14.0	3.90	3.12

- 1. Tuckerman, M. E.; Chandra, A.; Marx, D. J. Chem. Phys. 133, 124108 (2010)
- 2. Tuckerman, M. E.; Chandra, A.; Marx, D. Chem. Rev. 2010, 110, 2174
- 3. Milles, R. J. Phys. Chem., 1973, 77, 685
- 4. Halle, B.; Karlstrom, G. J. Chem. Soc., Faraday Trans. 2 1983, 70, 1031

Presolvation structure of PT in H3O+:

- Complex receiving the proton
- Water molecule in first shell
- A2D2 (inactive) to A1D2 (ready)

Diffusion Coefficient (10 ⁻⁹ m ² /s)	BLYP ¹	PBE	PBE vdW	PBE0 vdW	Exp. ^{2, 3, 4}
H ₃ O+	2.83	9.78	11.4	8.15	6.69

- 1. Tuckerman, M. E.; Chandra, A.; Marx, D. J. Chem. Phys. 133, 124108 (2010)
- 2. Tuckerman, M. E.; Chandra, A.; Marx, D. Chem. Rev. 2010, 110, 2174
- 3. Milles, R. J. Phys. Chem., 1973, 77, 685
- 4. Halle, B.; Karlstrom, G. J. Chem. Soc., Faraday Trans. 2 1983, 70, 1031

Proton Transfer with accurately modeled H-bond network

	Inactive	Ready	
Functional	A2D2	A1D2	Others
PBE	64.35	33.47	2.19
PBE_vdW	58.78	35.22	6.00
PBE0_vdW	51.22	41.94	6.84

	Inactive	Ready	
Functional	A2D2	A1D2	Others
PBE	64.35	33.47	2.19
PBE_vdW	58.78	35.22	6.00
PBE0_vdW	51.22	41.94	6.84

Diffusion Coefficient	BLYP ¹	PBE	PBE vdW	PBE0	Exp. ^{2, 3, 4}
(10 ⁻⁹ m²/s)				vdW	
H ₃ O+	2.83	9.78	11.4	8.15	6.69

- 1. Tuckerman, M. E.; Chandra, A.; Marx, D. J. Chem. Phys. 133, 124108 (2010)
- 2. Tuckerman, M. E.; Chandra, A.; Marx, D. Chem. Rev. 2010, 110, 2174
- 3. Milles, R. J. Phys. Chem., 1973, 77, 685
- 4. Halle, B.; Karlstrom, G. J. Chem. Soc., Faraday Trans. 2 1983, 70, 1031

- 1. Settle down the controversy on the proton transfer mechanism in OH-
- 2. Delocalization correction by hybrid functional
- 3. van der Waals interaction
- 4. Slow down PT in OH- towards experimental direction
- 5. The PT of H3O+ is much less affected due to error cancelation

Outline

Part I. Projects

- Proton transfer of OH- and H3O+ in an accurately modeled H-bond network
- > X-ray absorption spectra in liquid water by advanced modeling

Part II. Progress of our team members at LBL

Part III. Other performed projects and introduction of our posters

X-ray absorption of liquid water and ice

Photon Energy (eV) J. Tse *et. al.* Phys. Rev. Lett. 100,095502(2008)

- The spectral width (~ 11 eV) is the same in all spectra
- Three features (pre-edge, main-edge, post-edge) are present in the same energy range in all spectra
- The relative intensity of the features shows a characteristic system dependence

X-ray absorption of liquid water and ice

Quasiparticle treatment based on GW
 approximation is crucial in obtaining the XAS spectra
 Difference in XAS between water and ice

X-ray absorption of liquid water and ice: the difference in main peak

X-ray absorption of liquid water and ice

AIMD: ab initio molecular dynamics

Importance of of electron

excitation calculations?

- GW vs. DFT method
- GOW0 vs self-consistent GW

The importance of molecular modeling of water by AIMD?

- vdW and hybrid functional
- o nuclear quantum effect
- ab initio vs. classical MD
- size effect in water model

X-ray absorption of liquid water

Chen et al, PRL 105, 017802 (2010)

AIMD: ab initio molecular dynamics

Importance of of electron

excitation calculations?

- GW vs. DFT method
- GOW0 vs self-consistent
 GW

The importance of molecular modeling of water by AIMD?

- vdW and hybrid functional
- o nuclear quantum effect
- o ab initio vs. classical
- o size effect in water model

X-ray absorption of liquid water : recent advanced modeling

X-ray absorption of liquid water : nuclear quantum effect

Z. Sun, et. al. in preparation

AIMD: ab initio molecular dynamics

Importance of of electron

- ✤ GW vs. DFT method
- GOW0 vs self-consistentGW
- The importance of molecular modeling of water by AIMD?
 - o vdW and hybrid DFT
 - o nuclear quantum effect
 - o ab initio vs. classical MD
 - size effect in water model

X-ray absorption of liquid water : recent advanced modeling

Z. Sun, et. al. in preparation

XAS of 128mol TIP4P/ICE water

Tse et al., PRL 100, 095502 (2008)

AIMD: ab initio molecular dynamics

Importance of of electron

excitation calculations?

>

- ✤ GW vs. DFT method
- GOW0 vs self-consistent
 GW

The importance of molecular modeling of water by AIMD?

- o vdW and hybrid DFT
- o nuclear quantum effect
- o ab initio vs. classical MD
- o size effect in water model

X-ray absorption of liquid water : recent advanced modeling

GW vs. DFT method
 GOW0 vs self-consistent GW
 The importance of molecular
 modeling of water by AIMD?
 vdW and hybrid DFT

Importance of of electron

- o nuclear quantum effect
- o ab initio vs. classical MD
- size effect in water model

Tse et al., PRL 100, 095502 (2008)

- Solve the XAS theoretical modeling in water
- Electron excitation theory is crucial to go beyond the DFT approach
- □ Self-consistent GW is important to obtain the correct transition matrix
- van der Waals interaction, correction of delocalization error by PBE0, nuclear quantum effect are all important
- □ Size of modeling the water is also important

PEXSI (Pole Expansion and Selected Inversion)

- An efficient way to evaluate electron density ρ = diag(XX*), energies and forces without diagonalizing Kohn-Sham Hamiltonian (L. Lin, R. Car, C. Yang, J. Lu, L. Ying, W. E) in ab initio MD simulation
- Pole expansion $XX^* \approx Im\left[\sum_{i}^{M} \omega_i (H - z_i I)^{-1}\right]$
- Selected Inversion: compute selected entries of $(H z_i I)^{-1}$ using sparse matrix techniques.
- Complexity: $O(n_e)$ for 1D, $O\left(n_e^{3/2}\right)$ for 2D, $O(n_e^2)$ for 3D
- Work for both insulators and metals

PEXSI Parallelization

- Multi-level parallelism for high performance parallel computation
 - Embarrassing parallelization at the pole level.
 - Elimination tree level parallelism
 - Asynchronous communication
 - Overlap communication with computation
 - Tree-based restricted collective communication

[Jacquelin-Lin-Yang, ACM TOMS, 2015]

P=4,096

(FTree)

O

P=256

31

P=4,096 (ModBTree)

Application

- Electronic structure of large-scale graphene nanoflakes of different edges.
- SIESTA-PEXSI for large system size: 11700 atoms

- Integrated with SIESTA, CP2K
- On-going SciDAC collaboration for electronic structure of WTe2 layered systems.

Monolayer graphene

6400 cores used, 256 cores per pole, 50 poles

(http://manual.cp2k.org/trunk/CP2K_INPUT/F ORCE_EVAL/DFT/LS_SCF/PEXSI.html)

[Hu-Lin-Yang-Yang, JCP, 2014]

Poster by Fausto Martelli from Princeton University

Figure 1 : Left panel: *I* distribution in the IPES from *ab initio* and model potentials. Middle panel: $g_{OO}(r)$ for low *I* sites compared to experimental $g_{OO}(r)$ of high density amorphous (HDA) ice. Right panel: $g_{OO}(r)$ for high *I* sites compared to the experimental $g_{OO}(r)$ of low density amorphous (LDA) ice.

3. Santra, B., DiStasio R. A. Jr., Martelli, F., and Car, R.. *Mol. Phys.*, doi:10.1080/00268976.2015.1058432

average ring length \bar{R} as a function of Q_6 .

Monte Carlo simulations with enhanced sampling techniques show the existence of three basins in the free energy lendscape of deeply supercooled ST2 water: a high density liquid (HDL) basin, a low density liquid (LDL) basin, and a stable cubic ice (Ic) basin⁴. The H-bond network shows a distinct topology, measured by the ring distribution, in each of these three basins.

4. Palmer, J. C., Martelli, F. Liu, Y. Car, R. Panagiotopoulos, A. Z. and Debenedetti, P. G., *Nature*, **510**, 385-388 (2014)

Poster by Hsin-Yu Ho from Princeton University

Figure 3: (a) PLMC structures from AIMD at p_{exp} and both T = 0 K and $T = T_{exp}$. (b) PLMC structures from AIMD at p_{exp} and T_{exp} with and without vdW. The inset shows an overlay of the calculated equilibrium structure with the experimental X-ray structure.

Figure 4: Snapshots of ice Ih, II, and III at the experimental triple point (0.21 GPa and 238 K).

Figure 5: Volume (ΔV) and enthalpy (ΔH) differences between the ice phases at the triple point. The Phase Diagram of High-Pressure Superionic Ice

Jiming Sun,¹ Bryan K. Clark,² Salvatore Torquato,^{1,3,4} and Roberto Car^{*1,3,4}

¹Department of Physics, Princeton University

²Department of Physics, University of Illinois at Urbana-Champaign

³Department of Chemistry, Princeton University

⁴Princeton Institute for the Science and Technology of Materials

July 16, 2015

Molecular Physics: An International Journal at the Interface Between Chemistry and Physics

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tmph20

A systematic study of chloride ion solvation in water using van der Waals inclusive hybrid density functional theory

Arindam Bankura^a, Biswajit Santra^b, Robert A. DiStasio Jr.^b, Charles W. Swartz^a, Michael L. Klein^a & Xifan Wu^c

* Institute for Computational Molecular Science and Department of Chemistry, Temple University, Philadelphia, PA, USA

^b Department of Chemistry, Princeton University, Princeton, NJ, USA

^c Department of Physics, Temple University, Philadelphia, PA, USA Published online: 06 Jul 2015.

- Nuclear quantum effects on important ions solutions
- Highly parallelized RPA-GW
- OH radical in water
- Thermodynamics of water
- Interfaces of water and functional materials

Acknowledgement

- Lixin Zheng (Temple Student)
- > Zhaoru Sun (Postdoc, Temple Physics)
- Mike Klein (Temple U.)
- Roberto Car (Princeton)
- Bsiwajit Santra (Princeton)
- Fausto Martelli (Princeton)
- Jimin Sun (Princeton)
- Hsin-Yu Ho (Princeton, Chemistry)
- Esmond Ng (LBL)
- Chao Yang (LBL)
- Lin Lin (UC Berkeley)

