

ComPASS

Community Project for Accelerator Science and Simulation

James Amundson (*Fermilab*) for the ComPASS collaboration

with special thanks to Jean-Luc Vay (LBNL) and Cho-Kuen Ng (SLAC)

ComPASS SciDAC-3 Particle Accelerators and ComPASS

- High Energy Physics relies on particle accelerators for the majority of experimental work
 - Non-HEP applications last year...
 - > Frontiers in research involve both high *energy* accelerators and high *intensity* accelerators
 - ComPASS supports both
- HEP partnership with SciDAC Institutes: FASTMath, SDAV, and SUPER
- Cross-cutting activities with LQCD

Topics

Accelerator topics

Accelerators for High Energy Physics

- 2014 Particle Physics Project Prioritization Panel (P5) report identified these priorities for High Energy Physics
 - 1. The physics of neutrino mass
 - Fermilab PIP-I,-II and beyond
 - 2. New particles and interactions
 - Fermilab Muon Program, LHC
 Upgrades, new machines
 - 3. Higgs Boson as a tool for discovery
 - LHC and beyond, new machines

Building for Discovery

Strategic Plan for U.S. Particle Physics in the Global Context

Report of the Particle Physics Project Prioritization Panel (PS)

May 2014

- Short term: Fermilab will produce high-intensity beams (PIP)
 - Fermilab Muon Program (g-2 and Mu2e experiments)
- Longer term: Fermilab will produce even higher-intensity beams (PIP-II)
 - Long Baseline Neutrino Facility (LBNF) and the Deep Underground Neutrino Experiment (DUNE)
 ComPASS applications support both PIP and PIP-II

Moving on to future machines Laser-plasma accelerators: shorter and cheaper

Current world record by Berkeley Lab Laser Accelerator

4 GeV in only 10 cm!

First commercial Petawatt laser operating at > 42 J in ~30 fs at 1 Hz

Anysicists Break World Record for Compact Particle Accelerator with Powerful Laser

HPC topics

"May you live in interesting times..."

- OLCF's Summit
 - IBM POWER CPUs
 - NVIDIA Volta GPUs
 - Talked about ComPASS GPU-based efforts in 2013 meeting
- ALCF's Aurora
 - 3rd Generation Intel Xeon Phi
 - Also, NERSC's Cori
 - 2nd Generation Intel Xeon Phi
 - Work with 1st generation Phi is a valuable building block
 - 8-wide vector instructions
 - Nearly an order of magnitude

Vectorization is not optional

Optimizing Synergia for New Machines

- Synergia
 - beam dynamics
 - C++/Python
 - PIC, including independent particle and collectives
- MPI -> MPI + OpenMP
- Previous optimizations
 - MPI scalability
 - Collective effects
 - Require communication

- Code bottlenecks have now shifted
- New optimizations
 - Vectorization
 - Many-threaded OpenMP
 - Independent-particles not so trivial

Vectorization in Synergia 1

Original data layout

- Cache-friendly data locality
 - All coordinates for a single particle are contiguous
 - Not vectorization-friendly
- Data stored in dense 2d array
 - Boost MultiArray
- Independent particle code has per-particle overhead
 - ➢ Small*
 - Perfectly scalable

Vectorization in Synergia 2

New data layout

- Vectorization-friendly data locality
 - Each coordinate is contiguous
 - Always wins vs. original
- Data still stored in dense 2d array
 - Boost MultiArray with Fortran ordering
 - Minimal code changes
- New independent particle code has no per-particle overhead

Explicit Vectorization

C++ template-based

- No standard (yet) for multi-dimensional arrays in C++
- We use Boost MultiArray for particle data
 - Dense 2d array
- Consider multiple ways to access the y (index=2) value of particle i :
- MultiArray: particles[i][2]
- Manual index calculation: data[i+stride*2]
- C-style array: double * y = ... ; y[i];
- Restricted array: double * __restrict__ y = ... ; y[i];
 - Ianguage extension

Performance is highly platform- and compilerdependent

BG/Q	orig i	manual index	array re	stricted array	explicit vectorization
gcc	1.00	0.99	0.99	0.99	NA
xlc	1.87	1.87	1.87	3.75	7.78
bgclang	3.63	3.77	3.77	3.77	6.73
Intel Xeon					
gcc	1.00	1.00	1.00	1.00	2.00
icc	1.00	2.02	1.00	2.02	2.02
Intel Phi					
ісс	1.00	9.48	1.27	9.37	6.99

A single version of the code produces optimal performance on all platforms using GSVector

- Abstraction invaluable in low-level optimization
 - Changed data ordering with a flag, not by switching indices throughout the code.
 - Explicit vectorization with templates is easy.
 - Rewriting expressions with function calls is a nightmare.
- GCC and Clang are great for C++03
 - icc requires workarounds to compile our code
 - xlc requires more workarounds, still stuck on Boost Serialization
- HEP experiments have moved to C++11/C++14
 - Much better
 - C++17 on the horizon
- Multiple proposals for multi-dimensional arrays for C++17
 - ➢ Finally!
 - No evidence of input from HPC community
- Need real C++ support on next-generation machines

•Uses finite speed of light to enable domain

•J.-L. Vay, I. Haber & B. B. Godfrey, J. Comp. Phys. 243 (2013)

•J.-L. Vay, L. A. Drummond, A. Koniges, B. B. Godfrey & I. Haber,

poster SC'14, New Orleans, LA.

•2014 NERSC Innovative Use of HPC Achievement award

decomposition with local FFTs:

 \rightarrow direct scaling to many cores.

Spectral solver parallelization

Novel paradigm for parallelization of spectral solvers promises large scalability

•Warp FDTD/spectral-PIC (strong scaling)

Demonstrated analytically and numerically efficiency of Perfectly Matched Layers for open boundaries with spectral Maxwell solvers

ComPASS Applications

Electron beams surf on plasma waves that support very high electric fields.

surfer wake boat

e- beam wake

laser

For a 10 GeV stage:

 $\sim 1 \mu m$ wavelength laser propagates into $\sim 1 m$ plasma millions of time steps needed (similar to modeling 5m boat crossing ~5000 km Atlantic Ocean) **‡**Fermilab UCL

One approach: Boosted Frame

- BELLA-scale w/ ~ 5k CPU-Hrs: 2006 1D run → 2011: 3D run
- Other possibilities include quasi-static/laser envelope solvers However "numerical Cherenkov" instability limits speedup!

•*J.-L. Vay, Phys. Rev. Lett. **98**, 130405 (2007)

ComPASS

SciDAC-3

- Analysis of Numerical Cherenkov has been generalized:
 - to finite-difference PIC codes ("Magical" time step explained):
 - B. B. Godfrey and J.-L. Vay, J. Comp. Phys. 248 (2013) 33.
 - X. Xu, et. al., Comp. Phys. Comm., 184 (2013) 2503.
 - to pseudo-spectral PIC codes:
 - B. B. Godfrey, J. -L. Vay, I. Haber, J. Comp. Phys., 258 (2014) 689.
 - P. Yu et. al, J. Comp. Phys. 266 **(2014)** 124.
- Efficient suppression techniques were recently developed:
 - for finite-difference PIC codes:
 - B. B. Godfrey and J.-L. Vay, J. Comp. Phys. 267 (2014) 1.
 - B. B. Godfrey and J.-L. Vay, Comp. Phys. Comm., in press
 - for pseudo-spectral PIC codes:
 - B. B. Godfrey, J.-L. Vay, I. Haber, IEEE Trans. Plas. Sci. 42 (2014) 1339.
 - P. Yu, et. al., arXiv:1407.0272 **(2014)**

5 Fermilab

Applications to relativistic laboratory and space plasmas

ComPASS Applications

•Validation of a new concept of injection of high-quality beam

•Optimization of beam quality in chained stages for colliders studies

•Design of efficient accel-decel stages for portable radiation sources

•J.-L. Vay, et al, Proc. NPNSP14 (2015)
•C. G. R. Geddes, et al, Nucl. Instr. Meth. Phys. B **350** (2015)
•S G Rykovanov, et al, J. Phys. B: At. Mol. Opt. Phys. **47** (2014)

rererei

Dielectric Laser Acceleration

- Excitation of accelerating mode in photonic bandgap (PBG) fiber using laser beam from free space
- ACE3P used to investigate coupling mechanism for optimum power transfer form laser to accelerating mode in PBG fiber

PIP-II Linac Cryomodule

Deformation (enlarged for visualization)

Higher-order mode (HOM) in the PIP2 650 MHz cryomodule (consisting of 6 superconducting cavities) with deformations at equators of cavity cells. The electric field pattern is shown on a cut plane.

- Using ACE3P, deformed cavities in the cryomodule tuned to provide the designed frequency and field flatness across the cavity cells for the accelerating mode
- Deviations of HOM frequencies in deformed cryomodules evaluated for studying their effects on beam stability

ComPASS **Applications to Accelerator Theory** SciDAC-3

- Space charge modes provide theoretical framework for space charge studies
 - A. Burov, PRST-AB 12, 044202 (2009), PRST-AB 12, 109901, (2009).
- Difficult to modes from noise in realistic simulation
- First use of Dynamic Mode \succ Decomposition (DMD) in Beam **Dynamics**
 - ComPASS: Macridin, et al., PRST-AB to appear in 2015.
- **Excellent theory/simulation** \succ agreement

Application to Fermilab PIP-II

- Slip stacking
 - Used at Fermilab to create highintensity beams
 - Pairs of bunches combined
 - Synergia simulations of single pairs require O(1000) cores
 - Periodic boundary conditions mimic other pairs
 - Realistic simulations will include O(500) pairs
 - Non-trivial structure observed in operation
 - Bunch-bunch wake field interactions
- Truly a leadership class computing problem.
 - Work in progress!

Conclusions

- Accelerator Topics
 - ComPASS working on P5 Priorities
 - Especially PIP-II, et al. at Fermilab for LBNF and DUNE
- HPC Topics
 - New machines
 - Vectorization
 - Scalable spectral solvers
- ComPASS Applications
 - Boosted Frame/Cerenkov problem
 - New accelerator problems
 - Theory/Simulation and DMD
 - Slip Stacking

