
Scalable Computational
Tools for

Discovery and Design --
Excited State Phenomena

in Energy Materials

Jack Deslippe (Team Rep)

PIs

Jim Chelikowsky
UT Austin

Jeff Neaton
LBNL / UC
Berkeley

Steven Louie
LBNL / UC
Berkeley

Yousef Saad
U. of Minnesota

Andrew Canning
LBNL

Chao Yang
LBNL

Alex Demkov UT
Austin

Jack Deslippe
LBNL

Two Complementary Codes For Computational Discover and
 Design

BerkeleyGW

- Massively parallel excited
state (both one- and two-
particle) code.

- Computes quasiparticle and
optical properties of
materials of interest to the
DOE.

PARSEC

- Massively parallel real-space
DFT code.

- Capable of studying systems of
10K atoms.

- Implements spectrum slicing
approach for parallel eigenstate
generation.

Who am I?

Jack Deslippe

- NERSC User Services Group (Materials Science / Chemistry Consultant)

- NESAP Lead (NERSC’s exascale readiness program)

- Developer in BerkeleyGW project (SCIDAC Team Member)

- My Focus in this presentation will be on BerkeleyGW enhancements over
the last couple of years.

What is GW+BSE

Materials:
InSb, InAs
Ge
GaSb
Si
InP
GaAs
CdS
AlSb, AlAs
CdSe, CdTe
BP
SiC
C60
GaP
AlP
ZnTe, ZnSe
c-GaN, w-GaN
InS
w-BN, c-BN
diamond
w-AlN
LiCl
Fluorite
LiF

What is GW+BSE

Many-body effects extremely important in
Excited-State properties of Complex
Materials.

Includes screened-interaction for many-
body effects

Accurately describes properties important
for:

- Photovoltaics
- LEDs
- Junctions / Interfaces
- Defect Energy Levels
- ….

DFT Result

GW Reputation (Motivation Behind BerkeleyGW)

The Bad:

The Good:

The Bad:

Quantitatively accurate for quasiparticle properties in a wide
variety of systems.

Accurately describes dielectric screening important in excited
state properties.

Prohibitively slow for large systems. Usually thought to cost
orders of magnitude more time that DFT.

Memory intensive and scales badly. Exhausted by storage of the
dielectric matrix and wavefunctions. Limited ~50 atoms.

GW Reputation (Motivation Behind BerkeleyGW)

The Bad:

The Good:

The Bad:

Quantitatively accurate for quasiparticle properties in a wide
variety of systems.

Accurately describes dielectric screening important in excited
state properties.

Prohibitively slow for large systems. Usually thought to cost
orders of magnitude more time that DFT.

Memory intensive and scales badly. Exhausted by storage of the
dielectric matrix and wavefunctions. Limited ~50 atoms.

Prohibitively slow for large systems. Usually thought to cost
orders of magnitude more time that DFT.

Memory intensive and scales badly. Exhausted by storage of the
dielectric matrix and wavefunctions. Limited ~50 atoms.

X

BerkeleyGW Usage at NERSC

NERSC Code Breakdown 2013
2.4%

BerkeleyGW Usage at NERSC

Science Stories Using BerkeleyGW

PI: Prendergast

PI: Kioupakis

PI: Louie

PI: Van De Walle / CohenPI: Van De Walle / CohenPI: Wu

BerkeleyGW Workshops
▪Emphasized integration with PARSEC code

▪3 times the number of applicants than space available! 45 Attendees.

▪Survey results show that 100% of attendees found sessions useful of very useful.

BerkeleyGW in the Many-
Core Era

Cori

What is different about Cori?

●
●

●

●

●

●

●
●

●

●

●

●

Optimization Strategy For Cori

Both PARSEC and BerkeleyGW are included in top tier of
the NERSC Exascale Application Program (NESAP).

- Work with Cray, NERSC, Intel and SUPER staff
- Early access to simulators and hardware.

Strategy:

Optimization Strategy For Cori

Both PARSEC and BerkeleyGW are included in top tier of
the NERSC Exascale Application Program (NESAP).

- Work with Cray, NERSC, Intel and SUPER staff
- Early access to simulators and hardware.

Strategy: do i = 1, n
 a(i) = b(i) + c(i)
 enddo

Example Use Case For OpenMP in BerkeleyGW
and PARSEC

Parallel FFTs involve MPI all-
to-all communication (small
messages, latency bound).

Reducing the number of MPI
tasks in favor OpenMP
threads makes large
improvement in overall
runtime.

Work by Andrew Canning

CPU

Memory, Shared Arrays etc.

CPU CPU CPU

MPI Task

BerkeleyGW Self-Energy Calculation

Significant Bottleneck is large matrix reduction like
operations. Turning arrays into numbers.

 Targeting Intel Xeon Phi Many Core Architecture

1. Target more on-node parallelism. (MPI model already failing users)
2. Ensure key loops/kernels can be vectorized.

Example: Optimization steps for Xeon Phi Coprocessor

Refactor to Have 3
Loop Structure:

Outer: MPI
Middle: OpenMP
Inner: Vectorization

Example: Optimization steps for Xeon Phi Coprocessor
Add
OpenMP

Cache reuse
and Ensure
Vectorization

Bounding Around on the Roofline Model

2013 - Low Operational Intensity

Bounding Around on the Roofline Model

2014 - Refactored loops,
improved locality

Bounding Around on the Roofline Model

2014 - Vectorized Code

Bounding Around on the Roofline Model

2015 - Cache Blocking

Hybrid MPI-OpenMP Scaling Improvements.

Sigma Code Epsilon Code

Science/Method
Advances

New Features

• Exciton Bandstructures (Finite Center of Mass Momentum Excitons)

• Full-Frequency Calculations With ~2X GPP Cost (Hilbert Transform and Contour Deformation

Approach)

• Parallelization Over Frequencies

• Parallel IO and Transferable File Format

• Parallel reduced size FFTs

• Vastly Improved K-Point Convergence

• Support for PARSEC Input, Abinit Input, RMG Input

• Support for Static COHSEX Starting Point

• Empty State Requirement Reduction

• Full BSE Calculations in Parallel

• Accurate/efficient GPP models for Informatics

• Over 2500 Commits since BerkeleyGW 1.0. Many performance improvements, bug fixes and

new features

Improving K-Point Integration

How to efficiently capture long wavelength features in the dielectric matrix?

Our solution: subsampling method - a hybrid sampling of the Brillouin Zone.

Improving K-Point Integration

MoS2
Subsampling

Improving K-Point Integration

Coarse point Cluster point

B
in

di
ng

 E
ne

rg
y

(e
V

)

Interpolated

No Interpolation

Improved cluster interpolation method for BSE
36x36

0.2 Å-1

Efficient Full BSE Calculations

The Full BSE Hamiltonian is complex, non Hermitian

We need a parallel diagonalization routine for matrix of this form.

Want cost to be similar to the
Tamm-Dancoff approximation:

Efficient Full BSE Calculations

● Challenge: diagonalize non-Hermitian matrix (2x the rank):
● Efficiently
● In parallel
● Preserving structure of the solutions

● Solution: new solver written by Meiyue Shao and Chao Yang.

● Si (real matrix), nmat=24 000, #PEs=128

TDA Our solver Generic solver

Time (s) 78.163 243.481 (3.1x) 1198.535 (15.3 x)

● Naphthalene (complex matrix), nmat=8 000, #PEs=72

TDA Our solver Generic solver

Time (s) 41.088 259.309 (6.3x) 593.593 (14.4x)

Meiyue Shao, Felipe Homrich da Jornada, Chao Yang, Jack Deslippe, Steven
G. Louie. Submitted to Journal Elsevier Linear Algebra and its Applications
(arXiv preprint arXiv:1501.03830)

Example: Benzene

GW - Towards Informatics

GW - Towards Informatics

TurboMole (FF) FHI (FF) BerkeleyGW (GPP)

Michiel van Setten, … Jack Deslippe, Steven Louie, Chao Yang, Jeffrey Neaton,
Ferdinand… , " Submitted Journal of Chemical Theory and Computation

GW - Towards Informatics

Full-Frequency Calculations within G0W0
Systematically underestimate band gaps.

GPP gives generally very good energies for
informatics based approaches.

Poles in FF G0W0 ~

E_v_lda - E_gap
E_c_lda + E_gap

Poles in FF GW0 ~

E_v_QP - E_gap
E_c_QP - E_gap

Berylium Oxide

HOMO

LUMOLischner, Johannes … Jack Deslippe, J.B.
Neaton, S.G. Louie. Physical Review B 90.11
(2014): 115130.

Conclusions

Conclusions:

BerkeleyGW routinely run on systems with hundreds
of atoms.

Order 1000 atoms possible with DOE HPC resources
like Edison and Mira.

BerkeleyGW is ahead of the pack of GW codes.

● Foundry users find Full-Frequency calculation of MgO
takes hours with BerkeleyGW, weeks with abinit

● Yambo celebrates passing the 1000 CPU core in 2014,
BerkeleyGW commonly run on 10-100x that scale.

● VASP GW limited in size by memory requirements of (G,
G’) matrices.

C60 Pentacene Interface under
investigation by Neaton Group

Our Posters

Acknowledgements

This work could not have been done without SCIDAC!

SCIDAC Program on Excited State Phenomena in Energy Materials funded by
the U. S. Department of Energy, Office of Basic Energy Sciences and of
Advanced Scientific Computing Research, under Contract No. DE-AC02-
05CH11231 at Lawrence Berkeley National Laboratory and under Award No.
DESC0008877 at University of Texas, Austin

Extra Slides

Using the Static Limit To Improve GW

-0.6 eV

1.1 eV

0.27 eV

GW First Order GW Full Diagonalization

For a typical GW calculation, the LDA starting point is sufficient:

Notable exceptions - Silane:

M. Rohlfing and S.G. Louie Phys. Rev. B 62 4927 (2000).

Using the Static Limit to Improve GW

LDA LDA+GW CSX CSX+GW

HOMO -8.52 -12.80 -13.2 -12.80

LUMO -0.465 1.02 0.1 0.29

QP gap 8.06 13.82 13.3 13.10

 LDA COHSEX (Σ(E=0))

Jain, M., Deslippe, J...., Chelikowsky, J. R., & Louie, S. G. (2014). Physical Review B,90(11), 115148.

LUMO Orbital

Using the Static Limit to Improve GW

Deslippe, Jack, … S.G. Louie et al. Physical Review B 87.16 (2013): 165124. First done in work of Tiago and Chelikowsky.

Finite Momentum Excitons

● Q→0

− Optical absorption ~ Im εM

● Q ≠0

− Optically inactive

− Energy loss ~ -Im ε-1

− Important for exciton dynamics, relaxation, ...

-

+

+++

Q

Finite Momentum Excitons

● Ab-initio exciton bandstructure of MoS2

● Access novel physics:
● Nonanalytic dispersion due to 2D

Coulomb interaction
● Valley quantum phase with valley

pseudospin winding number = 2

1s

2p

Couples to longitudinal electric field

Couples to transverse electric field

D.Y. Qiu, T. Cao, and S.G. Louie, arxiv:1311.0963[cond-mat.mtrl-sci] (2015).

GW Parallelism

GW is an ideal case for Many-Core / Exascale. Many levels of parallelism can be exploited. Ideal
for many-core.

Inner Dimension of Hybrid MPI-OpenMP ZGEMM (OpenMP new to 1.2)
Outer Dimension of Hybrid MPI-OpenMP ZGEMM (OpenMP new to 1.2)
MPI Group Level Parallelization over Frequencies (New to 1.2)
Trivially parallelization over q points

Subsampling

Graphene

!$OMP DO reduction(+:achtemp)
 do my_igp = 1, ngpown

 ...

 do iw=1,3

 scht=0D0
 wxt = wx_array(iw)

 do ig = 1, ncouls

 !if (abs(wtilde_array(ig,my_igp) * eps(ig,my_igp)) .lt. TOL) cycle

 wdiff = wxt - wtilde_array(ig,my_igp)
 delw = wtilde_array(ig,my_igp) / wdiff

 ...

 scha(ig) = mygpvar1 * aqsntemp(ig) * delw * eps(ig,my_igp)

 scht = scht + scha(ig)

 enddo ! loop over g

 sch_array(iw) = sch_array(iw) + 0.5D0*scht

 enddo

 achtemp(:) = achtemp(:) + sch_array(:) * vcoul(my_igp)

 enddo

Simplified Final Loop Structure

 !if (abs(wtilde_array(ig,my_igp) * eps(ig,my_igp)) .lt. TOL) cycle

ngpown typically in
100’s to 1000s. Good
for many threads.

ncouls typically in
1000s - 10,000s.
Good for vectorization.
Don’t have to worry
much about memory.
alignment.

Original inner loop.
Too small to vectorize!

 wdiff = wxt - wtilde_array(ig,my_igp)
 delw = wtilde_array(ig,my_igp) / wdiff

 scha(ig) = mygpvar1 * aqsntemp(ig) * delw * eps(ig,my_igp)

Attempt to save work
breaks vectorization
and makes code
slower.

Computational Bottlenecks in MPP Rewrite

1. Compute via nxn' FFTs (N3 Step. Big Prefactor.):

2. Compute sum via large ZGEMM (N4 Step. Small
Prefactor. All to All Communication Done):

Where,

3. Matrix Inversion. ScaLAPACK

MPI Scaling of Epsilon Code:

Computational Bottlenecks

(Sigma GPP Option)
4. Manual loop reductions to compute sum for self-energy.
N3 x <number of bands of interest>

Things that prevent vectorization in your code

Compilers want to “vectorize” your loops whenever possible.
But sometimes they get stumped. Here are a few things that
prevent your code from vectorizing:

Loop dependency:

Task forking:

 do i = 1, n
 a(i) = a(i-1) + b(i)
 enddo

 do i = 1, n
 if (a(i) < x) cycle
 if (a(i) > x) …
 enddo

 do i = 1, n

Application Readiness

NERSC Top Codes

Things that prevent vectorization in your code

Example From NERSC User Group Hackathon -
(Astrophysics Transport Code)

… …

… …

30% speed up for entire
application!

Failure of the MPI-Only Programming Model in BerkeleyGW

★ Big systems require more memory. Cost scales as Natm^2 to store the data.

★ In an MPI GW implementation, in practice, to avoid communication, data is duplicated and
each MPI task has a memory overhead.

★ On Edison, users sometimes forced to use 1 of 24 available cores, in order to provide MPI
tasks with enough memory. 90% of the computing capability is lost.

…

What is GW+BSE

Epsilon/Sigma Improvements

- Performance improvements from:
Parallel IO (HDF5)
Vectorization
Memory-locality improvements
FFT Size/Performance Improvements

NESAP Participation

Both PARSEC and BerkeleyGW are included in the top tier of the NERSC Exascale Science
Application Program

•
–

•
–
–

•
–

–

NESAP Advances with Cray, Intel and SUPER

* Collaboration with SUPER SciDAC Institute (J. Tilson, K. Huck, R.Fowler)

Memory Bandwidth Optimizations

What to do if your code is memory bandwidth bound?

1. Try to improve memory locality, cache reuse

2. Identify arrays leading to high bandwidth usage and make sure they are/will-be
allocated in HBM on Cori.

