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Two Complementary Codes For Computational Discover and
 Design

BerkeleyGW

- Massively parallel excited 
state (both one- and two-
particle) code. 

- Computes quasiparticle and 
optical properties of 
materials of interest to the 
DOE. 

PARSEC

- Massively parallel real-space 
DFT code.

- Capable of studying systems of 
10K atoms.

- Implements spectrum slicing 
approach for parallel eigenstate 
generation. 



Who am I?

Jack Deslippe

- NERSC User Services Group (Materials Science / Chemistry Consultant)

- NESAP Lead (NERSC’s exascale readiness program)

- Developer in BerkeleyGW project (SCIDAC Team Member)

- My Focus in this presentation will be on BerkeleyGW enhancements over 
the last couple of years.



What is GW+BSE

Materials:
InSb, InAs
Ge 
GaSb
Si
InP
GaAs
CdS
AlSb, AlAs
CdSe, CdTe
BP
SiC
C60
GaP
AlP
ZnTe, ZnSe
c-GaN, w-GaN
InS
w-BN, c-BN
diamond
w-AlN
LiCl
Fluorite
LiF



What is GW+BSE

Many-body effects extremely important in 
Excited-State properties of Complex 
Materials.  

Includes screened-interaction for many-
body effects

Accurately describes properties important 
for:

- Photovoltaics
- LEDs
- Junctions / Interfaces
- Defect Energy Levels
- ….

DFT Result



GW Reputation (Motivation Behind BerkeleyGW)

The Bad:

The Good:

The Bad:

Quantitatively accurate for quasiparticle properties in a wide 
variety of systems.

Accurately describes dielectric screening important in excited 
state properties.

Prohibitively slow for large systems.  Usually thought to cost 
orders of magnitude more time that DFT.

Memory intensive and scales badly.  Exhausted by storage of the 
dielectric matrix and wavefunctions.  Limited ~50 atoms.
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BerkeleyGW Usage at NERSC

NERSC Code Breakdown 2013
2.4%



BerkeleyGW Usage at NERSC



Science Stories Using BerkeleyGW

PI: Prendergast

PI: Kioupakis

PI: Louie

PI: Van De Walle / CohenPI: Van De Walle / CohenPI: Wu



BerkeleyGW Workshops
▪Emphasized integration with PARSEC code

▪3 times the number of applicants than space available! 45 Attendees.

▪Survey results show that 100% of attendees found sessions useful of very useful.



BerkeleyGW in the Many-
Core Era



Cori



What is different about Cori?
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Optimization Strategy For Cori

Both PARSEC and BerkeleyGW are included in top tier of 
the NERSC Exascale Application Program (NESAP). 

- Work with Cray, NERSC, Intel and SUPER staff
- Early access to simulators and hardware. 

Strategy:



Optimization Strategy For Cori

Both PARSEC and BerkeleyGW are included in top tier of 
the NERSC Exascale Application Program (NESAP). 

- Work with Cray, NERSC, Intel and SUPER staff
- Early access to simulators and hardware. 

Strategy:  do i = 1, n
   a(i) = b(i) + c(i) 
 enddo



Example Use Case For OpenMP in BerkeleyGW
and PARSEC

Parallel FFTs involve MPI all-
to-all communication (small 
messages, latency bound).

Reducing the number of MPI 
tasks in favor OpenMP 
threads makes large 
improvement in overall 
runtime.

Work by Andrew Canning

CPU

Memory, Shared Arrays etc.

CPU CPU CPU

MPI Task



BerkeleyGW Self-Energy Calculation

Significant Bottleneck is large matrix reduction like 
operations. Turning arrays into numbers.



 Targeting Intel Xeon Phi Many Core Architecture

1. Target more on-node parallelism. (MPI model already failing users)
2. Ensure key loops/kernels can be vectorized. 

Example: Optimization steps for Xeon Phi Coprocessor

Refactor to Have 3 
Loop Structure:

Outer: MPI
Middle: OpenMP
Inner: Vectorization

Example: Optimization steps for Xeon Phi Coprocessor
Add 
OpenMP

Cache reuse 
and Ensure 
Vectorization



Bounding Around on the Roofline Model

2013 - Low Operational Intensity 



Bounding Around on the Roofline Model

2014 - Refactored loops, 
improved locality 



Bounding Around on the Roofline Model

2014 - Vectorized Code 



Bounding Around on the Roofline Model

2015 - Cache Blocking



Hybrid MPI-OpenMP Scaling Improvements.

Sigma Code Epsilon Code



Science/Method 
Advances



New Features

• Exciton Bandstructures (Finite Center of Mass Momentum Excitons)

• Full-Frequency Calculations With ~2X GPP Cost (Hilbert Transform and Contour Deformation 

Approach)

• Parallelization Over Frequencies

• Parallel IO and Transferable File Format

• Parallel reduced size FFTs

• Vastly Improved K-Point Convergence

• Support for PARSEC Input, Abinit Input, RMG Input

• Support for Static COHSEX Starting Point

• Empty State Requirement Reduction

• Full BSE Calculations in Parallel

• Accurate/efficient GPP models for Informatics

• Over 2500 Commits since BerkeleyGW 1.0. Many performance improvements, bug fixes and 

new features



Improving K-Point Integration

How to efficiently capture long wavelength features in the dielectric matrix?

Our solution: subsampling method - a hybrid sampling of the Brillouin Zone.



Improving K-Point Integration

MoS2
Subsampling



Improving K-Point Integration

Coarse point Cluster point
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Interpolated

No Interpolation

Improved cluster interpolation method for BSE
36x36

0.2 Å-1



Efficient Full BSE Calculations

The Full BSE Hamiltonian is complex, non Hermitian

We need a parallel diagonalization routine for matrix of this form. 

Want cost to be similar to the 
Tamm-Dancoff approximation:

 

   

 



Efficient Full BSE Calculations

● Challenge: diagonalize non-Hermitian matrix (2x the rank):
● Efficiently
● In parallel
● Preserving structure of the solutions

● Solution: new solver written by Meiyue Shao and Chao Yang.

● Si (real matrix), nmat=24 000, #PEs=128

TDA Our solver Generic solver

Time (s) 78.163 243.481 (3.1x) 1198.535 (15.3 x)

● Naphthalene (complex matrix), nmat=8 000, #PEs=72

TDA Our solver Generic solver

Time (s) 41.088 259.309 (6.3x) 593.593 (14.4x)

Meiyue Shao, Felipe Homrich da Jornada, Chao Yang, Jack Deslippe, Steven 
G. Louie. Submitted to Journal Elsevier Linear Algebra and its Applications 
(arXiv preprint arXiv:1501.03830)



Example: Benzene



GW - Towards Informatics



GW - Towards Informatics

TurboMole (FF)       FHI (FF)              BerkeleyGW (GPP)

Michiel van Setten, … Jack Deslippe, Steven Louie, Chao Yang, Jeffrey Neaton, 
Ferdinand… , " Submitted Journal of Chemical Theory and Computation 



GW - Towards Informatics

Full-Frequency Calculations within G0W0 
Systematically underestimate band gaps.

GPP gives generally very good energies for 
informatics based approaches.

Poles in FF G0W0 ~

E_v_lda - E_gap
E_c_lda + E_gap

Poles in FF GW0 ~

E_v_QP - E_gap
E_c_QP - E_gap

Berylium Oxide

HOMO

LUMOLischner, Johannes … Jack Deslippe, J.B. 
Neaton, S.G. Louie. Physical Review B 90.11 
(2014): 115130.



Conclusions



Conclusions:

BerkeleyGW routinely run on systems with hundreds 
of atoms. 

Order 1000 atoms possible with DOE HPC resources 
like Edison and Mira. 

BerkeleyGW is ahead of the pack of GW codes. 

● Foundry users find Full-Frequency calculation of MgO 
takes hours with BerkeleyGW, weeks with abinit

● Yambo celebrates passing the 1000 CPU core in 2014, 
BerkeleyGW commonly run on 10-100x that scale.

● VASP GW limited in size by memory requirements of (G,
G’) matrices.

C60 Pentacene Interface under 
investigation by Neaton Group



Our Posters



Acknowledgements 

This work could not have been done without SCIDAC! 

SCIDAC Program on Excited State Phenomena in Energy Materials funded by 
the U. S. Department of Energy, Office of Basic Energy Sciences and of 
Advanced Scientific Computing Research, under Contract No. DE-AC02-
05CH11231 at Lawrence Berkeley National Laboratory and under Award No. 
DESC0008877 at University of Texas, Austin



Extra Slides





Using the Static Limit To Improve GW

-0.6 eV

1.1 eV

0.27 eV

GW First Order GW Full Diagonalization

For a typical GW calculation, the LDA starting point is sufficient:

Notable exceptions - Silane:

M. Rohlfing  and S.G. Louie Phys. Rev. B 62 4927 (2000).



Using the Static Limit to Improve GW

LDA LDA+GW        CSX     CSX+GW

HOMO -8.52 -12.80 -13.2 -12.80

LUMO -0.465  1.02  0.1 0.29

QP gap 8.06  13.82  13.3 13.10

   LDA      COHSEX   (Σ(E=0))

Jain, M., Deslippe, J...., Chelikowsky, J. R., & Louie, S. G. (2014). Physical Review B,90(11), 115148.

LUMO Orbital



Using the Static Limit to Improve GW

Deslippe, Jack, … S.G. Louie et al. Physical Review B 87.16 (2013): 165124. First done in work of Tiago and Chelikowsky.



Finite Momentum Excitons

● Q→0

− Optical absorption ~ Im εM

● Q ≠0

− Optically inactive

− Energy loss ~ -Im ε-1

− Important for exciton dynamics, relaxation, ...

-

+

---

+++

Q



Finite Momentum Excitons

● Ab-initio exciton bandstructure of MoS2

● Access novel physics:
● Nonanalytic dispersion due to 2D 

Coulomb interaction
● Valley quantum phase with valley 

pseudospin winding number  = 2

1s

2p

Couples to longitudinal electric field

Couples to transverse electric field

D.Y. Qiu, T. Cao, and S.G. Louie, arxiv:1311.0963[cond-mat.mtrl-sci] (2015).



GW Parallelism

GW is an ideal case for Many-Core / Exascale. Many levels of parallelism can be exploited. Ideal 
for many-core.

Inner Dimension of Hybrid MPI-OpenMP ZGEMM   (OpenMP new to 1.2)
Outer Dimension of Hybrid MPI-OpenMP ZGEMM  (OpenMP new to 1.2)
MPI Group Level Parallelization over Frequencies   (New to 1.2)
Trivially parallelization over q points



Subsampling

Graphene



!$OMP DO reduction(+:achtemp)
  do my_igp = 1, ngpown

    ...

    do iw=1,3

      scht=0D0
      wxt = wx_array(iw)

      do ig = 1, ncouls

        !if (abs(wtilde_array(ig,my_igp) * eps(ig,my_igp)) .lt. TOL) cycle

        wdiff = wxt - wtilde_array(ig,my_igp)
        delw = wtilde_array(ig,my_igp) / wdiff

        ...

        scha(ig) = mygpvar1 * aqsntemp(ig) * delw * eps(ig,my_igp)

        scht = scht + scha(ig)

      enddo ! loop over g

      sch_array(iw) = sch_array(iw) + 0.5D0*scht

    enddo
    
    achtemp(:) = achtemp(:) + sch_array(:) * vcoul(my_igp)

  enddo

Simplified Final Loop Structure

        !if (abs(wtilde_array(ig,my_igp) * eps(ig,my_igp)) .lt. TOL) cycle

ngpown typically in 
100’s to 1000s. Good 
for many threads.

ncouls typically in 
1000s - 10,000s. 
Good for vectorization. 
Don’t have to worry 
much about memory. 
alignment.

Original inner loop. 
Too small to vectorize!

        wdiff = wxt - wtilde_array(ig,my_igp)
        delw = wtilde_array(ig,my_igp) / wdiff

        scha(ig) = mygpvar1 * aqsntemp(ig) * delw * eps(ig,my_igp)

Attempt to save work 
breaks vectorization 
and makes code 
slower.



Computational Bottlenecks in MPP Rewrite

1. Compute via nxn' FFTs (N3 Step. Big Prefactor.): 

2. Compute sum via large ZGEMM (N4 Step. Small 
Prefactor. All to All Communication Done):

Where,

3. Matrix Inversion. ScaLAPACK



MPI Scaling of Epsilon Code:



Computational Bottlenecks

(Sigma GPP Option)
4. Manual loop reductions to compute sum for self-energy. 
N3 x <number of bands of interest>



Things that prevent vectorization in your code

Compilers want to “vectorize” your loops whenever possible. 
But sometimes they get stumped. Here are a few things that 
prevent your code from vectorizing:

Loop dependency:

Task forking:

  do i = 1, n
      a(i) = a(i-1) + b(i) 
  enddo

  do i = 1, n
      if (a(i) < x) cycle
      if (a(i) > x) … 
  enddo

  do i = 1, n



Application Readiness

NERSC Top Codes



Things that prevent vectorization in your code

Example From NERSC User Group Hackathon - 
(Astrophysics Transport Code)

… …

… …

30% speed up for entire 
application!



Failure of the MPI-Only Programming Model in BerkeleyGW 

★ Big systems require more memory. Cost scales as Natm^2 to store the data.

★ In an MPI GW implementation, in practice, to avoid communication, data is duplicated and 
each MPI task has a memory overhead.

★ On Edison, users sometimes forced to use 1 of 24 available cores, in order to provide MPI 
tasks with enough memory.  90% of the computing capability is lost.

…



What is GW+BSE



Epsilon/Sigma Improvements

- Performance improvements from:
Parallel IO (HDF5)
Vectorization
Memory-locality improvements
FFT Size/Performance Improvements 



NESAP Participation

Both PARSEC and BerkeleyGW are included in the top tier of the NERSC Exascale Science 
Application Program

•
–

•
–
–

•
–

–



NESAP Advances with Cray, Intel and SUPER

* Collaboration with SUPER SciDAC Institute (J. Tilson, K. Huck, R.Fowler)



Memory Bandwidth Optimizations

What to do if your code is memory bandwidth bound?

1. Try to improve memory locality, cache reuse 

2. Identify arrays leading to high bandwidth usage and make sure they are/will-be 
allocated in HBM on Cori. 


