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SDAV 

FASTMath & SUPER 

see Poster A1 (18) 
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Model and Pinning 

Optimizing SuperConductor Transport Properties Through Large-Scale Simulation 

Time dependent GL 
equations: 

In dimensionless units: 

3 

Inclusions and defects are modeled by critical temperature Tc(r) 
[ε(r)=Tc(r)/T-1] modulation 
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Examples: Order parameter ψ(r) follows Tc-

pattern 
 

Optimizing SuperConductor Transport Properties Through Large-Scale Simulation 

4 

C
h

e
c
k
e

rb
o

a
rd

 

P
o

ly
c
ry

s
ta

lli
n

e
 

R
e

c
ta

n
g

u
la

r 

|ψ|2 

Tc 



http://oscon-scidac.org 

Experimental motivation 
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Angular dependence of the critical current in commercial REBCO coated conductors 

TEM image of heavy-

ion damage tracks 

Irradiation 

YBCO tape made by 
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Observation and scientific questions 
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• Disappearance of central peak 

after irradiation  Pinning 

effects are non-additive. 

Explanation? 

• Overall increase of the critical 

current. Can we increase it 

more? 

• Can we get a more 

homogeneous critical current? 

 

• What is the optimal irradiation 

track concentration? 

Here we use large-scale Ginzburg-Landau simulations to address these 

questions 

 Simulation-assisted design of mixed-pinning landscapes with 

predictable “critical-current-by-design” 
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Sample realization  
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 Sample is realized as a cuboid, discretized using a 
regular mesh of 108 grid points with mesh size of 
x0/2  

 (quasi-)periodic boundary conditions 
 Inclusions and irradiation tracks are modeled by a 

different low-Tc component 
Anisotropy in c-direction is implemented by an 

anisotropy factor g=5 
 For each field and pinning configuration an IV curve 

is calculated from which the critical current is 
obtained 
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Comparison  

Experiment &  

Simulation 
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Validation of the simulation 
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Depinning in fixed field B (θ = 0°/45°)=0.08 
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Discovery of novel mechanism: Non-additivity of 

defects 
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B (θ = 0°) FL 

Columnar 
defects work 
like shortcuts 
for vortices 



http://oscon-scidac.org 

Predication of the critical current in irradiated samples 

Optimizing SuperConductor Transport Properties Through Large-Scale Simulation 

12 

B
Φ
  

[H
c
2
] 

B
Φ
  

[H
c
2
] 

J
c
  

[J
d

p
] 

θ [°] Angle of field, θ [°] 

S
a

m
e

 c
u

rr
e

n
t,
 J

 >
 J

c
 

 

nanorods + columns 
B || c 

Sadovskyy et. al., submitted to Nature Materials (2015) 



http://oscon-scidac.org 

Optimizing SuperConductor Transport Properties Through Large-Scale Simulation 

13 

Critical Current by Design 

 Experimental validation 

 Non-additivity of defects 

 Prediction of critical currents 

Intelligent Optimization of Superconductors 

 Approach 

 Example 

Extracting, Tracking, and Visualizing of Vortices  

 Tracking methods 

 Tools 

 Next steps 

 
SDAV 

FASTMath & SUPER 

see Poster A2 (19) 
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Optimization Challenge & Approach 
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Desired output 

 Optimal inclusion configurations for maximal critical current 

 Robustness of these configurations 

 Dependence on magnetic field and temperature 

 

Challenge 

 We need to calculate the critical current for many configurations with small 
fluctuations (requires disorder averaging)   

 A typical pinning landscape has about 10 free parameters 

 

Approach 

 Fully automated derivative-free optimizer: 
Define possible parameter ranges and the optimizer samples promising 
pinning configurations 

 Can handle arbitrary combination of different defect types 
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Example: 2 parameter optimization of random 

spherical inclusions 
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System size: 100x100x50 x3  
[256x256x128 mesh points] 
Simulation time=105 per current 

Occupied volume fraction f  npVp 

Overlap: f  f - f2/2 

with diameter a and density np 
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Optimal particle density at fixed magnetic field 

Optimizing SuperConductor Transport Properties Through Large-Scale Simulation 

16 

IVs for different numbers of particles (occupied 
volume fractions) 
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Optimal parameters 

Optimizing SuperConductor Transport Properties Through Large-Scale Simulation 

17 

Critical current vs particle density  
for different particle sizes 

Dependences of optimal parameters  
on  magnetic field 
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Contour plots of critical current 

• Optimal particle diameter 

decreases with field  

• Optimal volume fraction = 18-
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Sampling in parameter space 
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SDAV 

FASTMath & SUPER 

see Poster B1 (19) 
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Vortices in superconductors 
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 Vortices are defined as topological defects of 
the order parameter field ψ, which are a locus 
of points satisfy 
 
 
 
n is usually +/-1, indicating the chirality 

 Vortices are 1D curves in 3D space 

 The vortices are fundamentally different from 
vortices in fluid flow 

 

Amplitude |ψ| 

Phase θ 
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TDGL Data Visualization 
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 Little research has been done in 
visualizing complex-field data 

– Volume rendering/isosurface blur fine 
features 

– Vortex extraction for single frames in 
regular grid data is proposed by Phillips et 
al. recently 

 Extracting, tracking, and visualizing 
vortices are the keys to understand the 
dissipative material behaviors and the 
impact of adding material inclusions. 
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Deliverables of a detection algorithm 
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 A vortex extraction algorithm for both structured and 
unstructured mesh TDGL data 

 A vortex tracking algorithm, which is as accurate as the data 
discretization 

 Application of various visualization techniques 
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Overview of the Vortex Extraction Algorithm 
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• Vortex extraction locates vortex line at single time frames 

 By definition, singularities can be localized by checking phase 
jumps over mesh faces.  

 As there are always equal numbers of “ins” and “outs” for each 
cell, the punctured faces are further connected into vortex lines 
based on the mesh connectivity.  
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Overview of the Vortex Tracking Algorithm 
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• Vortex tracking algorithm 
relates vortex lines over 
adjacent frames, unless 
there are topological 
changes. 

 The movement of a vortex 
line is detected by checking 
each space-time edge to see 
whether it is intersected at 
an intermediate time 
between two adjacent 
frames.  
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Algorithm Pipeline 
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 Load data 

 Extract punctured spatial faces 

 Extract intersected space-time edges 

 Graph-based vortex extraction and tracking 
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Algorithm Details –  

Punctured Face/Intersected Edge Detection 
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 Phase jump over faces 

 

 

 

 Phase jump over space-time 
edges 

• Gauge transformation 

*) Always use local transformations 

to compute phase jumps 
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Event Detection and Visualization 

Optimizing SuperConductor Transport Properties Through Large-Scale Simulation 

27 

 Events are defined as topological changes of vortex graphs: 
merging, splitting, birth, death, recombination/crossing, etc. 

 

 

 

 

 Event visualization is based on storyline-like visual representations 
[Tanahashi and Ma 2012] 
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Results – 3D Structured Grid Data 

Optimizing SuperConductor Transport Properties Through Large-Scale Simulation 

28 



http://oscon-scidac.org 

Results – 3D Unstructured Data 
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29 Guo et. al., Proc. IEEE SciVis (2015) 
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Software Development and ParaView Plugins 
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 A standalone visualization tool, as well as a ParaView plugin are developed for 
loading, analyzing, and visualizing TDGL simulation data.  

 The unstructured mesh data structures are based on libMesh, which is the 
finite element library used by the simulation. The framework can be integrated 
with the simulation for in-situ analysis in the future. 
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Next steps: Twist, Writhe, and Stabilizing Helical 

Vortices 
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 When electrostatic and 
magnetic fields aligned, phase 
field twists around the vortex. 

 

 Shielding supercurrents spirals 
around vortex rather than 
form planar loops. 

 

 Twisting phase field can be 
numerically extracted from GL 
simulations.   Represented as 
ribbon. 

No Twist 

Twisting phase field Twisting phase field 
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Excess Twist leads to Writhe 
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Spillmann, Teschner, “Cosserat Nets”, 2009 

• Twist  Buckling Instability  
Writhe of 
Filament/Rod/Vortex 

• Perpendicular Lorentz Forces 
on writhing vortex   helical 
coils unstable.  “Blows up”  
(Superconducting state lost): 
New criterion for upper limit 
of the critical current 

• However, if vortex inside a 
cylindrical inclusion, cylinder 
can “traps” helical vortex 
state.  (Superconducting state 
retained) 

Twisted Rod Buckles and Writhes 

Stable Helical Twisted Vortex  

in Cylindrical Inclusion  
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