Simulating the generation, evolution and fate of electronic excitations in molecular and nanoscale materials with first principles methods

Martin Head-Gordon (LBNL), Anna Krylov (USC), Xiaoye Li (LBNL), Bill McCurdy (LBNL), Esmond Ng (LBNL), Birgitta Whaley (LBNL), Sam Williams (LBNL), Chao Yang (LBNL)

Excited states: Physical significance and methodological challenges

Significance:

- Bound states. Light harvesting, photochemistry, ...
- Unbound states. Electron attachment / detachment, materials degradation, damage.

Methodological challenges:

- The problems of TDDFT self-interaction error, failure for strong correlation – are acute.
- Must turn to the "illegitimate concept", of Ψ....

Outline.

Science highlight: Making Heisenberg Hamiltonians

Nick Mayhall, MHG, J. Chem. Phys. 141, 134111 (2014). Nick Mayhall, MHG, J. Phys. Chem. Lett. 6, 1982 (2015).

Science highlight: Calculating molecular resonances

Math highlight: Non-hermitian interior eigenvalues

Software highlight: LibTensor

Parallel highlight: LibTensor with distributed memory

Heisenberg spin couplings

- If Heisenberg physics is valid:
 - $\hat{H} = -2J \,\,\hat{\mathbf{S}}_{A} \cdot \hat{\mathbf{S}}_{B}$

- What is Heisenberg physics?
 - Molecules with 2 (or more) weakly interacting radical centers...
 - ... each has well-localized unpaired electrons (CT small)
 - Strongly correlated low-lying states arise from recoupling of the 2 spins according to Clebsch-Gordon.
 - Lande interval rule: E(S) E(S-1) = -2JS
- Systems which obey Heisenberg physics have strong spin correlations and DFT typically fails
 - Complexity rises steeply with number of entangled spins

Spin-flipping (invented by Anna Krylov ~2000)

- Avoids the multi-reference problem...
- By finding the <u>highest multiplicity low-energy</u> configuration — ... which becomes the <u>single reference</u>...
 - -... whose half-occupied orbitals define the active space
- e.g. $(H_3N)_5Cr^{III}OCr^{III}(NH_3)_5^{4+}$ $Cr(III) \Rightarrow d^3$
 - ⇒ 6 unpaired e's⇒ heptet single reference

• Then flip 3 spins to tackle the multireference problem... –we have been developing efficient spin-flip methods

Heisenberg spin couplings from just 1 spin-flip Nick Mayhall, MHG, JCP 141, 134111(2014)

• If Heisenberg physics is valid:

$$\hat{H} = -2J \,\,\hat{\mathbf{S}}_A \cdot \hat{\mathbf{S}}_B$$

• the state separations are:

$$E(S) - E(S-1) = -2JS$$

• Spin-pure results can be obtained by flipping only one spin (a great alternative to broken symmetry DFT!!)

- Start from the high spin single reference: S_{max}
- Flipping a single spin accesses S_{max-1} .

$$J = -\frac{E(S_{\max}) - E(S_{\max} - 1)}{2S_{\max}}$$

Applying the 1SF strategy for J (cm⁻¹) Nick Mayhall, MHG, JCP 141, 134111(2014)

A: Cr-O-Cr

B: Fe-O-Fe

C: Cr-OH-Cr

method	Cr-O-Cr	Fe-O-Fe	Cr-OH-Cr
SF-CAS(S)	-117	-145	-7.9
SF-CCSD	-158	-118	-9.3
DMRG	-166	-117	
experiment	-225	-112	-15.8
	3+3 unpaired e's	5+5 unpaired e's	3+3 unpaired e's

Generalizing to n-site Heisenberg physics Nick Mayhall: J. Phys. Chem. Lett. 6, 1982 (2015).

- Make the Heisenberg Hamiltonian from 1 spin-flip states.
- Diagonalizing Heisenberg Hamiltonian for energy levels.

Test case: Explicit vs implicit Nick Mayhall: J. Phys. Chem. Lett. 6, 1982 (2015).

Cr₆ horseshoe complex Nick Mayhall: J. Phys. Chem. Lett. 6, 1982 (2015).

6 Cr atoms: 18 entangled e's Would have been 9 spin flips But actually only 1 is needed

	SF-CAS	SF-CAS(h,p)	SF-CAS(S)	Exp.
J_{12}	0.51	-0.64	-2.30	_
J_{23}	0.52	-0.59	-2.20	_
J_{34}	0.57	-0.64	-2.37	_
J_{45}	0.42	-0.53	-1.90	_
J_{56}	0.43	-0.54	-1.94	_
$J_{ m Outside}$	0.47	-0.59	-2.12	-5.65
J_{Inside}	0.50	-0.59	-2.15	-5.89

Summary and outlook

- Spin-flip approach to strong electron correlations is under active development, starting from SF-CAS
 - adding out-of-active-space excitations: 1X, 2X, ...?
 - relaxing the orbitals of each configuration: SF-NOCI
- Spin-flip methods map very naturally to molecular magnetism problems with Heisenberg hamiltonians
 - For either 2 or *n* sites, only 1 spin-flip is sufficient for *J*
 - Gives an exponential reduction in effort!!
- Lots of challenges ahead
 - Forces and non-adiabatic couplings
 - Two key challenges are as yet not fully resolved ;-))

Outline. Science highlight: Making Heisenberg Hamiltonians **Science highlight: Calculating molecular resonances** Alec White, MHG, Bill McCurdy, J. Chem. Phys. 142, 054103 (2015) Alec White, Bill McCurdy, MHG, J. Chem. Phys. (submitted) (2015). Math highlight: Non-hermitian interior eigenvalues Software highlight: LibTensor Parallel highlight: LibTensor with distributed memory

Quantum Chemistry of Metastable States

Metastable states have complex energies: solutions of Schrödinger equation with pure outgoing wave scattering boundary conditions

$$E(ec{R}) = E_r(ec{R}) - i\,\Gamma(ec{R})$$

lifetime $= \hbar/\Gamma(ec{R})$

• Complex basis function method:

$$\phi(\mathbf{r}) = N(x - A_x)^l (y - A_y)^m (z - A_z)^n \exp\left[-\alpha e^{-2i\eta} (\mathbf{r} - \mathbf{A})^2\right]$$

Makes resonance wavefunction square integrable: allows use of quantum chemistry methods/codes for scattering states... but:

$$\langle ij|kl\rangle = \int d\mathbf{r}_1 \int d\mathbf{r}_2 \phi_i(\mathbf{r}_1) \phi_j(\mathbf{r}_2) r_{12}^{-1} \phi_k(\mathbf{r}_1) \phi_l(\mathbf{r}_2)$$

Central Challenge: Accomplished! Alec White adapted Q-Chem's integral engine to calculate complex two-electron integrals.

Non-Hermitian (NH) Hartree-Fock (HF) Theory for Metastable Anion States

Trial function is a determinant of spin orbitals

$$\Phi = ert arphi_1 \, ar arphi_2 \cdots arphi_n \, ar arphi_n \, arphi_s ert \ = rac{\delta}{\delta arphi_i} rac{\langle \Phi | H | \Phi
angle}{\langle \Phi | \Phi
angle} = 0$$

SCF equations from complex variational (stationary) principle

- NH Restricted Open-Shell HF (ROHF) was piloted in the 80's
- NH Unrestricted HF (NH-UHF) is new and can dissociate polyatomic metastable anions
- Find stationary points of theta trajectories (varying scaling)
- Standard basis sets are augmented with very diffuse functions at the center of mass.

First application of NH-UHF to a complex potential energy surface: carbon monoxide

• CO⁻ pi* resonance:

- unbound in the equilibrium region (blue dots, left panel)
- NH-UHF lifetime is zero for r > 1.3 Angstroms (right panel)
- NH-UHF curve coalesces with UHF anion curve for r > 1.3
- could enable prediction of vibrational structure in scattering

Examples of larger polyatomics: formaldehyde and carbon tetrafluoride

0.05

real part of the alpha spin attachment density of pi* symmetry resonance of CH₂O

	method	center	width
T ₂ symmetry resonance of	NH-SE	11.1	2.0
CF ₄ with caug-cc-pVTZ basis	NH-ROHF	9.1	0.8
	NH-UHF	8.9	0.8

On-going work and future challenges

• NH-SCF calculations are really tough to converge.

- We will be seeking help on this problem!
- There may be scope for reformulating NH-SCF.
- Matrix elements are calculated in the c-norm.
 - Orbitals are c-orthogonal. It is not a metric space
- We're implementing a more numerically stable orthogonalization (SVD-based)
- With Anna Krylov, we will use the complex basis function method with coupled cluster theory (EOM-EA-CCSD).
 - Allows assessment of correlation effects, and direct comparison with complex absorbing potentials (CAPs)

Outline.

Science highlight: Making Heisenberg Hamiltonians

Science highlight: Calculating molecular resonances

Math highlight: Non-hermitian interior eigenvalues

Dmitry Zuev, Eugene Vecharynski, Chao Yang, Natalie Orms, Anna I. Krylov, J. Comput Chem. 36, 273–284 (2015).

Software highlight: LibTensor

Parallel highlight: LibTensor with distributed memory

GPLHR: A Non-Hermitian Eigensolver

- Generalized Preconditioned Locally Harmonic Residual method (GPLHR) is useful for:
 - Coupled cluster Equation-ofmotion calculation
 - Complex scaled configuration interaction calculations
- Algorithm designed by Eugene Vecharynski & Chao Yang.
 Implemented in LibTensor for production calculations & comparison against Davidson.

GPLHR basics

• A matrix-free approach (i.e. do matrix-vector products)

- Reuse information generated from the iterative solution to Newton correction equation for the eigenvectors (or Schur vectors) to construct the search space
- Use Harmonic Ritz projection (suitable for approximating interior eigenvalues/vectors)
- More robust than Davidson for interior eigenvalues

Example: EOM-IP-CCSD for PYPa-Wp/6-31+G(d,p) interior roots near 11 a.u

• Both algorithms work well for the lowest roots, but for a higher interior eigenvalue, GPLHR is far more robust.

	Davidson				
We're excited	nroots	niter	°S	Max. # of stored vectors	# matvec
about using	1	DNC	C	_	_
	2	DNG	С 🗌	_	_
GPLHR for EOM	3	DNG	2	_	_
EA-CCSD	5	DNO	C	_	_
calculations of				GPLHR	
resonances	nroots	niters	m	Max. # of stored vectors	s # matvec
_	1	4	1	8	9
	2	4	1	16	18
	3	4	1	24	27
	5	8	1	40	63

Outline.

Science highlight: Making Heisenberg Hamiltonians

Science highlight: Calculating molecular resonances

Math highlight: Non-hermitian interior eigenvalues

Software highlight: LibTensor (& Q-Chem)

LibTensor: E. Epifanovsky, K. Ibrahim, S. Williams, A. Krylov J Comp Chem. 2013;34:2293–2309, HIPC 2014 Q-Chem: Mol Phys. 113, 184–215 (2015)

Parallel highlight: LibTensor with distributed memory

What is Q-Chem? What is LibTensor?

• Q-Chem is a widely used electronic structure program.

- Est 1993. Commercial code, academic control.
- Over 4 million lines of code: C++ and Fortran.
- Over 200 active developers: Open TeamWare.
- Over 55,000 distributed copies.

Where does LibTensor fit?

- A C++ library for doing tensor contractions & compactly expressing coupled cluster electron correlation methods
- Open source release (permissive BSD) as well as a key component of Q-Chem
- Main focus of SciDAC development

Q-Chem 4.2 (2014) & 4.3 (2015) include SciDAC features

Advances in molecular quantum chemistry contained in the Q-Chem 4 program package

Yihan Shao^a, Zhengting Gan^a, Evgeny Epifanovsky^{a,b,c}, Andrew T.B. Gilbert^d, Michael Wormit^e, Joerg Kussmann^f, Adrian W. Lange^g, Andrew Behn^c, Jia Deng^d, Xintian Feng^b, Debashree Ghosh^{b,1}, Matthew Goldey^c, Paul R. Horn^c, Leif D. Jacobson^g, Ilya Kaliman^h, Rustam Z. Khaliullin^c, Tomasz Kuś^b, Arie Landau^{b,2}, Jie Liu^{i,g}, Emil I. Proynov^{a,3}, Young Min Rhee^{c,4}, Ryan M. Richard^g, Mary A. Rohrdanz^{g,5}, Ryan P. Steele^j, Eric J. Sundstrom^c, H. Lee Woodcock III^{ad}, Paul M. Zimmerman^{c,k}, Dmitry Zuev^b, Ben Albrecht¹, Ethan Alguire^s, Brian Austin^c, Gregory J. O. Beran^m, Yves A. Bernard^b, Eric Berguist¹, Kai Brandhorst^{c,6}, Ksenia B. Bravaya^{b,7}, Shawn T. Brown^{a,8}, David Casanova^{c,n}, Chung-Min Chang^a, Yunquing Chen^k, Siu Hung Chien^a, Kristina D. Closser^a, Deborah L. Crittenden^{d,9}, Michael Diedenhofen^o, Robert A. DiStasio Jr.^c, Hainam Do^p, Anthony D. Dutoi^q, Richard G. Edgar^r, Shervin Fatehi^{s,j}, Laszlo Fusti-Molnar^{a,10}, An Ghysels^{t,11}, Anna Golubeva-Zadorozhnaya^b, Joseph Gomes^c, Magnus W.D. Hanson-Heine^p, Philipp H.P. Harbach^e, Andreas W. Hauser^c, Edward G. Hohenstein^u, Zachary C. Holden^g, Thomas-C. Jagau^b, Hyunjun Ji^v, Ben Kaduk^w, Kirill Khistyaev^b, Jaehoon Kim^v, Jihan Kim^{c,12}, Rollin A. King^x, Phil Klunzinger^y, Dmytro Kosenkov^{h,13}, Tim Kowalczyk^{w,14}, Caroline M. Krauter^e, Ka Un Lao^g, Adèle Laurent^{b,15}, Keith V. Lawler^{c,16}, Sergey V. Levchenko^{b,17}, Ching Yeh Lin^d, Fenglai Liu^{al}, Ester Livshits^z, Rohini C. Lochan^c, Arne Luenser^f, Prashant Manohar^{b,18}, Samuel F. Manzer^c, Shan-Ping Mao^{aa}, Narbe Mardirossian^c, Aleksandr V. Marenich^{ab}, Simon A. Maurer^f, Nicholas J. Mayhall^c, Eric Neuscamman^c, C. Melania Oana^b, Roberto Olivares-Amaya^{r,ac}, Darragh P. O'Neill^d, John A. Parkhill^{c,19}, Trilisa M. Perrine^{k,20}, Roberto Peverati^{ab,c}, Alexander Prociuk^k, Dirk R. Rehn^e, Edina Rosta^{b,21}, Nicholas J. Russ^a, Shaama M. Sharada^c, Sandeep Sharma^{ac}, David W. Small^c, Alexander Sodt^{c,t}, Tamar Stein^{z,5}, David Stück^c, Yu-Chuan Su^{aa}, Alex J.W. Thom^{c,22}, Takashi Tsuchimochi^w, Vitalii Vanovschi^b, Leslie Vogt^r, Oleg Vydrov^w, Tao Wang^b, Mark A. Watson^{ac,r}, Jan Wenzel^e, Alec White^c, Christopher F. Williams^g, Jun Yang^{ac}, Sina Yeganeh^w, Shane R. Yost^{c,w}, Zhi-Qiang You^{ae,g}, Igor Ying Zhang^{af}, Xing Zhang^g, Yan Zhao^{ab}, Bernard R. Brooks^t, Garnet K.L. Chan^{ac}, Daniel M. Chipman^{ag}, Christopher J. Cramer^{ab}, William A. Goddard III^{ah}, Mark S. Gordon^{ai}, Warren J. Hehre^y, Andreas Klamt^o, Henry F. Schaefer III^{aj}, Michael W. Schmidt^{ai}, C. David Sherrill^u, Donald G. Truhlar^{ab}, Arieh Warshel^b, Xin Xu^{af}, Alán Aspuru-Guzik^r, Roi Baer^z, Alexis T. Bell^c, Nicholas A. Besley^p, Jeng-Da Chai^{aa}, Andreas Dreuw^e, Barry D. Dunietz^{ak}, Thomas R. Furlani^{al}, Steven R. Gwaltney^{am}, Chao-Ping Hsu^{ae}, Yousung Jung^v, Jing Kong^{a,3}, Daniel S. Lambrecht¹, WanZhen Liangⁱ, Christian Ochsenfeld^f, Vitaly A. Rassolov^{an}, Lyudmila V. Slipchenko^h, Joseph E. Subotnik^s, Troy Van Voorhis^w, John M. Herbert^g, Anna I. Krylov^b, Peter M.W. Gill^d and Martin Head-Gordon^{c,*}

We face a great range of software challenges!

• How do we meet open source mandates in a commerical code?

- Q-Chem is helping to create public domain libraries of general use....
 - libtensor: many-body contractions (Anna Krylov)
 - libefp: effective fragment potential (Lyudmila Slipchenko)
- Synergisms: We do mid-scale computing (limited parallel scalability).
 - disruptive computer architectures (gpu/MIC) are quite disruptive...
 - we hope to avoid need for domain-specific solutions
- Limited interoperability? standardized data interchange
 - GUI interfaces, QM/MM...
- We're a single job code: but our users do projects.
- Managing software renewal? for medium term (& esp. long term) sustainability

Outline.

Science highlight: Making Heisenberg Hamiltonians

Science highlight: Calculating molecular resonances

Math highlight: Non-hermitian interior eigenvalues

Software highlight: LibTensor & Q-Chem

Parallel highlight: LibTensor with distributed memory

Khaled Ibrahim, S. Williams, (E. Solomonik), E. Epifanovsky, A. Krylov

Motivation and background

- LibTensor is very powerful (i.e. large range of CC methods rapidly and efficiently implemented).
 - Its roots were in mid-scale computing
 - Not designed for distributed data or massively parallel
- We decided to leverage the Cyclops Tensor Framework (CTF) as a backend for LibTensor...
 - Scalable on distributed-memory supercomputers
 - Created at UC Berkeley by Solomonik et al. in 2013
 - Uses a cyclic distribution of tensor elements to allow for a regular parallel distribution (avoids MPI All-to-All stresses)
 - Distributed SUMMA-based matrix-matrix multiplication (MPI row broadcasts plus calls to highly-tuned vendor BLAS routines)

Khaled and Sam took LibTensor where it had never gone before....

- Edison (Cray XC30 at NERSC) up to 16,384 cores
- Mira (IBM Blue Gene/Q at Argonne) up to 32,768 threads
- Titan (Cray XK7 w/GPU's at Oak Ridge) up to 2048 GPUs
- Strong-scaled methylated uracil water dimer test problem with 302 basis functions and C_s symmetry
- Modified to exploit tuned BLAS routines (including CULA for GPUs)
- Tuned MPI vs. OpenMP (or CUDA) to balance MPI vs. compute

Strong scaling test highlights

- More than 150x faster on 2000 nodes of Mira than on a large, multi-socket, big-memory SMP at NERSC.
- GPU-acceleration reduced DGEMM to 3% of the run time.
- Mira's network provided the best overall performance and scalability, although local DGEMM was slowest
- Future work will examine customized MPI collectives to improve performance and scalability on Edison and Titan.

Summary and perspective

- We've been having a great time building new tools and software through new collaborations
 - Math & chemistry, CS & chemistry, chemistry & chemistry...
- There is other exciting progress that I had to skip, such as:
 - Jiri Brabec & Esmond Ng: sparse tensors in CC theory
 - Francois Rouet & Sherry Li: STRUMPACK, low-rank structured factorization preconditioners
 - Shane Yost & MHG: new dynamical correlation correction to spin-flip methods
 - Jan Roden & Birgit Whaley: excited states & tensors
- Thank-you to all my team members & to you for listening!