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Overview

Eigenvalue problems arise in a number of SciDAC applications. We highlight some recent progress on 1) computing a large number eigenpairs of a Hermitian matrix in the context of density functional theory based electronic structure calculation
2) computing a few selected eigenpairs of a non-Hermitian matrix in the context of equation-of-motion coupled cluster (EOM-CC) calculation and complex scaling configuration interaction 3) computing all or a selected number of eigenpairs of the
Bethe—Salpeter and Casida Hamiltonian matrices which have a special structure.

Computing a large invariant subspace of a Hermitian matrix Non-Hermitian eigenvalue problems: computational challenges Eigenvalue problems with a paired matrix structure

» The Bethe—Salpeter eigenvalue (BSE) problem

» The linear response (LR) eigenvalue problems in time-dependent density
functional theory (TDDFT)

» Large-scale density functional theory based electronic structure .
calculations require computing a large number of lowest eigenpairs (103
pairs or more).

» Density functional perturbation theory requires many more lowest
eigenpairs (103-10°).

Electronic resonant states (method of complex coordinate rotation).
» Equation-of-motion coupled-cluster (EOM-CC) method.
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Absorption spectrum

» Require inverting A — o/ (“shift-and-invert”).

» Performance issues
» Limited degree of parallelism (“one-by-one” eigenpair computation).
~ Failure to fully take advantage of BLASS.

Exciton > Band gap

Intensity [Arb. units]
T T

» Existing eigensolvers contain repeated calls of the Rayleigh—Ritz
procedure that becomes a bottleneck when many eigenpairs are

computed on a massively distributed-memory parallel machines. >~ Robustness issues.
» Standard computational kernels for solving dense eigenvalue problems
(ScaLAPACK) do not scale beyond a certain number of cores. » Develop a novel eigensolver that overcomes the known difficulties.

Absorption spectrum

An exciton (electron-hole pair)

The Generalized Preconditioned Locally Harmonic Residual (GPLHR)
method

» Compute many lowest eigenpairs on massively parallel high performance
computers.

» Avoid or reduce the amount of the RR computations.

Computing all/selected eigenpairs of the Casida Hamiltonian

» Uses the harmonic Rayleigh—Ritz procedure to extract approximate
eigenpairs from low-dimensional search subspaces.

» Performs block iterations, effectively leverages BLAS3 kernels, provides
multiple levels of concurrency.

Takes advantage of the available preconditioning techniques.

» The Casida Hamiltonian matrix is of the form

. A B 2nx2n
H = [—E —Z] cC :

The Projected Preconditioned Conjugate Gradient (PPCG) algorithm

» The new eigensolver for computing large invariant subspaces of

Hermitian matrlces.. . . ] R T s limited/tigh where A = A* is Hermitian, B = B is complex symmetric, with
» The standard Rayleigh—Ritz procedure is replaced by a sequence of » Robust, better convergence if memory is limited/tight. A B B

small dense eigenvalue problems plus a QR factorization of the » Provides an option of switching between the approximate eigenvector [_ _] -0 (i.e., [— —] Is Hermitian positive definite.)

approximate eigenspace. and Schur vectors iterations. B A B A

» The Rayleigh—Ritz computation is performed only once every 5-10
iterations.

» Takes advantage of the available preconditioning techniques.
» Relatively easy to implement.
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» In BSE, often all eigenpairs of H are required.

In TDDFT, H is real and sparse for molecules, and only several smallest
positive eigenpairs are needed.

Develop structure-preserving parallel eigensolver for BSE.

Develop and apply block preconditioned eigensolver techniques tailored
specifically to the LR problem.

Performance of the PPCG algorithm in Quantum Espresso
» BSE can be reduced to a real positive definite Hamiltonian eigenvalue

problem and solved by a skew-symmetric eigensolver.

» When H is real it is equivalent to solving an n x n product eigenvalue
problem MKx = \°x, where M=A+B+=0,K=A— B> 0.

» Cholesky factorization and SVD are used to solve MKx = A\°x when all
eigenpairs are needed.

» Several smallest eigenpairs of MK are computed by properly
preconditioned iterative eigensolvers applied to the symmetric
generalized eigenvalue problem KMKx = \2KXx.
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Benchmark systems: hydrated photoactive yellow protein chromophore PYPa-W, (left) and
dihydrated 1,3-dimethyluracil (mU),-(H20)2 (right).
PYPa-W,/6-31+G(d,p)
GPLHR (o = 11 a.u.)
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Benchmark systems: the solvation of LiPF6 in ethylene carbonate and propylene carbonate
liquids containing 318 atoms (left), the 16 by 16 supercell of graphene containing 512 carbon
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atoms (center), and 5 by 5 by 5 supercell of bulk silicon containing 1000 silicon atoms (right). | 4 | 3 9
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Scaling of eigensolvers for Li318 (2,062 eigenpairs)
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(b) Graphene512 (576 cores) (c) Silicon1000 (2,400 cores)

2 The number of requested eigenpairs. ® The number of iterations to converge all eigenpairs.
¢ The total number of matrix-vector multiplications.
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Parallel scalability
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Ongoing work: PPCG in QBox
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The ultimate goal is to perform a molecular dynamics simulation for up to
10,000 atoms to study lithium-ion batteries

» 2X speedup due to a reduced SCF iteration count compared to a default
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QBox eigensolver (PSDA)
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SCF convergence of Al108 (120 cores on Edison)

——PPCG, 4 steps/SCF iter.

——PSDA, 7 steps/SCF iter.
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GPLHR in other applications

GPLHR exhibits a rapid and reliable convergence for a variety of standard
and generalized eigenvalue problems across different applications (e.g.,
crystal growth simulation or stability analysis of fluid flows)
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» Often requires significantly less memory to maintain convergence rate
similar to state-of-the-art approaches (e.g., block Davidson methods).

» New eigensolvers (LOBPCG-LR and Davidson-LR) achieve 2x speedup
compared to the traditional Davidson approach for the LR eigenproblem.

» The proposed approaches require 2x less matrix-vector products and
offer a significant reduction in memory usage.



