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Overview

Eigenvalue problems arise in a number of SciDAC applications. We highlight some recent progress on 1) computing a large number eigenpairs of a Hermitian matrix in the context of density functional theory based electronic structure calculation
2) computing a few selected eigenpairs of a non-Hermitian matrix in the context of equation-of-motion coupled cluster (EOM-CC) calculation and complex scaling configuration interaction 3) computing all or a selected number of eigenpairs of the
Bethe–Salpeter and Casida Hamiltonian matrices which have a special structure.

Computing a large invariant subspace of a Hermitian matrix

Motivation:
I Large-scale density functional theory based electronic structure

calculations require computing a large number of lowest eigenpairs (103

pairs or more).
I Density functional perturbation theory requires many more lowest

eigenpairs (103-105).
The challenge:
I Existing eigensolvers contain repeated calls of the Rayleigh–Ritz

procedure that becomes a bottleneck when many eigenpairs are
computed on a massively distributed-memory parallel machines.

I Standard computational kernels for solving dense eigenvalue problems
(ScaLAPACK) do not scale beyond a certain number of cores.

Our goal:
I Compute many lowest eigenpairs on massively parallel high performance

computers.
I Avoid or reduce the amount of the RR computations.

The Projected Preconditioned Conjugate Gradient (PPCG) algorithm

I The new eigensolver for computing large invariant subspaces of
Hermitian matrices.

I The standard Rayleigh–Ritz procedure is replaced by a sequence of
small dense eigenvalue problems plus a QR factorization of the
approximate eigenspace.

I The Rayleigh–Ritz computation is performed only once every 5-10
iterations.

I Takes advantage of the available preconditioning techniques.
I Relatively easy to implement.

[1] E. Vecharynski, C. Yang, J. E. Pask: A projected preconditioned
conjugate gradient algorithm for computing many extreme eigenpairs of a
Hermitian matrix, J. Comp. Phys., Vol. 290, pp. 73–89, 2015

Performance of the PPCG algorithm in Quantum Espresso

Benchmark systems: the solvation of LiPF6 in ethylene carbonate and propylene carbonate
liquids containing 318 atoms (left), the 16 by 16 supercell of graphene containing 512 carbon
atoms (center), and 5 by 5 by 5 supercell of bulk silicon containing 1000 silicon atoms (right).
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Convergence of eigensolvers for Li318 (2,062 eigenpairs)
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(a) Li318 (480 cores)

0 20 40 60 80 100 120 140

10
−2

10
−1

10
0

10
1

Convergence of eigensolvers for Graphene512 (2,254 eigenpairs)
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(b) Graphene512 (576 cores)
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Convergence of eigensolvers for Sicluster (2,550 eigenpairs)
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(c) Silicon1000 (2,400 cores)
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Scaling of eigensolvers for Li318 (2,062 eigenpairs)
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Ongoing work: PPCG in QBox

The ultimate goal is to perform a molecular dynamics simulation for up to
10,000 atoms to study lithium-ion batteries
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SCF convergence of Al108 (120 cores on Edison)
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PPCG, 4 steps/SCF iter.

PSDA, 7 steps/SCF iter.

I 2x speedup due to a reduced SCF iteration count compared to a default
QBox eigensolver (PSDA)

Non-Hermitian eigenvalue problems: computational challenges

Computing a subset of eigenpairs closest to the given shift σ

I Electronic resonant states (method of complex coordinate rotation).
I Equation-of-motion coupled-cluster (EOM-CC) method.

Difficulties with the existing solution approaches
I Require inverting A− σI (“shift-and-invert”).
I Performance issues

I Limited degree of parallelism (“one-by-one” eigenpair computation).
I Failure to fully take advantage of BLAS3.

I Robustness issues.
Our goal:
I Develop a novel eigensolver that overcomes the known difficulties.

The Generalized Preconditioned Locally Harmonic Residual (GPLHR)
method

I Uses the harmonic Rayleigh–Ritz procedure to extract approximate
eigenpairs from low-dimensional search subspaces.

I Performs block iterations, effectively leverages BLAS3 kernels, provides
multiple levels of concurrency.

I Takes advantage of the available preconditioning techniques.
I Robust, better convergence if memory is limited/tight.
I Provides an option of switching between the approximate eigenvector

and Schur vectors iterations.

[1] E. Vecharynski, C. Yang, F. Xue: Generalized preconditioned locally
harmonic residual method for non-Hermitian eigenproblems, SIAM J. Sci.
Comput., submitted (2015)
[2] D. Zuev, E. Vecharynski, C. Yang, N. Orms, and A. I. Krylov: New
algorithms for iterative matrix-free eigensolvers in quantum chemistry, J.
Comp. Chem., Vol. 36, Issue 5, pp. 273–284, 2015

GPLHR in Q-Chem: EOM-CC benchmark

Benchmark systems: hydrated photoactive yellow protein chromophore PYPa-Wp (left) and
dihydrated 1,3-dimethyluracil (mU)2-(H2O)2 (right).

PYPa-Wp/6-31+G(d,p)
GPLHR (σ = 11 a.u.)

nrootsa nitersb m Max. # of stored vectors # matvecc

1 4 1 8 9
2 4 1 16 18
3 4 1 24 27
5 8 1 40 63

a The number of requested eigenpairs. b The number of iterations to converge all eigenpairs.
c The total number of matrix-vector multiplications. Davidson failed to deliver the solution.

Left: PYPa-Wp/6-31+G(d,p) for the pairs with converged energies of 4.11 and 4.20 eV;
Right: (mU)2-(H2O)2/6-311+G(d,p) for the pairs with converged energies of 8.89 and 10.04

eV.

GPLHR in other applications

GPLHR exhibits a rapid and reliable convergence for a variety of standard
and generalized eigenvalue problems across different applications (e.g.,
crystal growth simulation or stability analysis of fluid flows)
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I Often requires significantly less memory to maintain convergence rate
similar to state-of-the-art approaches (e.g., block Davidson methods).

Eigenvalue problems with a paired matrix structure

I The Bethe–Salpeter eigenvalue (BSE) problem
I The linear response (LR) eigenvalue problems in time-dependent density

functional theory (TDDFT)

Band gapExciton

An exciton (electron-hole pair) Absorption spectrum

Computing all/selected eigenpairs of the Casida Hamiltonian

Problem setting
I The Casida Hamiltonian matrix is of the form

H =

[
A B
−B −A

]
∈ C2n×2n,

where A = A∗ is Hermitian, B = BT is complex symmetric, with[
A B
B A

]
� 0 (i.e.,

[
A B
B A

]
is Hermitian positive definite.)

I In BSE, often all eigenpairs of H are required.
I In TDDFT, H is real and sparse for molecules, and only several smallest

positive eigenpairs are needed.

Our goal:
I Develop structure-preserving parallel eigensolver for BSE.
I Develop and apply block preconditioned eigensolver techniques tailored

specifically to the LR problem.
Methodology
I BSE can be reduced to a real positive definite Hamiltonian eigenvalue

problem and solved by a skew-symmetric eigensolver.
I When H is real it is equivalent to solving an n × n product eigenvalue

problem MKx = λ2x , where M = A + B � 0, K = A− B � 0.
I Cholesky factorization and SVD are used to solve MKx = λ2x when all

eigenpairs are needed.
I Several smallest eigenpairs of MK are computed by properly

preconditioned iterative eigensolvers applied to the symmetric
generalized eigenvalue problem KMKx = λ2Kx .

Experimental results

Parallel scalability of the dense BSE solver
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Total
Cholesky
Form W
Tridiagonalization
Diagonalization
Eigvec. Householder
Eigvec. GEMM

I The parallel solver is built on top of ScaLAPACK.
I The scalability of the solver is comparable to that of GEMM.

Efficiency of new LR eigensolvers
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LOBPCG−LR

Davidson−LR

Standard Davidson

I New eigensolvers (LOBPCG-LR and Davidson-LR) achieve 2x speedup
compared to the traditional Davidson approach for the LR eigenproblem.

I The proposed approaches require 2x less matrix-vector products and
offer a significant reduction in memory usage.


