
SUPER Application and Institute Engagement:

Support for this work was provided through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy Office of Advanced Scientific Computing Research

Introduction

Engagement with SciDAC-3 Science Application
Partnership (SAP) projects is at the core of SUPER,
providing motivation, research directions, example
code and problems, and opportunities for verification
of approaches and near-term impacts. During FY15,
SUPER has funded collaborations with 14 application
projects.

SUPER contributes to the SAPs by promoting best
practices, by providing technology and architecture
expertise, and by collaborating directly on
performance engineering tasks. Some example
activities and quantifiable impacts are described here.

Engagement with the SAPs has also led to direct
collaborations with each of the other three SciDAC
Institutes on crosscutting issues and technologies.

Background
v Electronic Excitations in Molecular and Nanoscale Materials BES

SciDAC Partnership (PI: Martin Head-Gordon)

v In the past, the LibTensor tensor contraction library (USC) used in this
project was restricted to running on large SMPs with spinning disks
(bad match for DOE supercomputers)

v USC/LBL decided to leverage the Cyclops Tensor Framework (CTF)
as a backend for LibTensor…

§  library for scalable tensor contractions on distributed-memory
supercomputers

§  created at UC Berkeley by Solomonik et al. in 2013
§  uses a cyclic distribution of tensor elements that allow for a regular

parallel distribution (MPI All-to-All stresses the network)
§  distributed SUMMA-based matrix-matrix multiplication (MPI row

broadcasts plus calls to highly-tuned vendor BLAS routines)
v LBL/SUPER researchers evaluated performance and scalability…

§  Edison (Cray XC30 at NERSC) up to 16,384 cores
§  Mira (IBM Blue Gene/Q at Argonne) up to 32,768 threads
§  Titan (GPU-accelerated Cray XK7 at Oak Ridge) up to 2048

GPUs
§  strong-scaled methylated uracil water dimer test problem with 302

basis functions and Cs symmetry
§  Modified to exploit tuned BLAS routines (including CULA for GPUs)
§  Tuned MPI vs. OpenMP (or CUDA) to balance MPI vs. compute

Observations
v GPU-acceleration reduced DGEMM to 3% of the run time.
v Unfortunately, Titan uses an older 3D torus network on which

SUMMA’s MPI broadcasts did not scale well.
v Although Edison’s newer Aries network saw better performance,

salability was also impaired.

v Although local DGEMM was slowest on Mira, Mira’s network
ensured it provided the best overall performance and scalability.

v Libtensor/CTF on 2K nodes of Mira is more than 150x faster than
the original Libtensor/SMP backend running on a large, multi-socket,
big-memory SMP at NERSC.

v Future work will examine customized MPI collectives to improve
performance and scalability on Edison and Titan.

LibTensor / CTF

Khaled Ibrahim, Samuel Williams
Lawrence Berkeley National Lab

Evgeny Epifanovsky, Anna Krylov
University of Southern California

Background
v CalLat NP SciDAC Partnership (PI: Wick Haxton)

v Configuration-interaction (CI) method is a popular technique for solving
quantum many-body systems

§  often cast as large eigenpair problem using iterative methods like
Lanczos

§  matrix dimensions can easily exceed 1 billion, nonzeros can exceed
10 trillion

§  stored matrix representations can require in excess of 100TB of
memory (1000s of compute nodes are needed to solve these
problems).

v BIGSTICK is a scalable, memory-efficient CI code

§  a series of tables are used to compute nonzeros on the fly
§  reduces memory requirements down to less than 0.5TB
§  As such, BIGSTICK can run very large problems on small

machines
v Unfortunately, raw performance can suffer…

§  performance per nonzero is now highly variable (table lookups)
§  complex data and computational decomposition can lead to substantial

load imbalance and performance degradation.
v LBL, UCB, and SDSU collaborated to evaluate and optimize BIGSTICK on

two large DOE supercomputers…

§  Cray XC30 at NERSC (Edison)
§  IBM Blue Gene/Q at Argonne (Mira)

v We use two challenging test problems…

§  132Cs using a 100Sn frozen core with 5 valence protons and 27 valence
neutrons

§  132Xe using a 100Sn frozen core with 4 valence protons and 8 valence
neutrons (132Xe is larger (easier to load balance), but sparser (harder to
get efficiency))

0.00#

1.00#

2.00#

3.00#

4.00#

5.00#

6.00#

7.00#

8.00#

9.00#

1.0#

10.0#

100.0#

1000.0#

32# 64# 128# 256# 512# 1024#

Sp
ee
du

ps
'

La
nc
zo
s'
Ti
m
es
'P
er
'It
er
a5

on
'

(s
ec
on

ds
)'

Number'of'Compute'Nodes'

Cray'XC30'(132Cs)'

Original#
Op5mized#
Speedup#

0.00#

0.50#

1.00#

1.50#

2.00#

2.50#

3.00#

1.0#

10.0#

100.0#

1000.0#

32# 64# 128# 256# 512# 1024#

Sp
ee
du

ps
'

La
nc
zo
s'
Ti
m
es
'P
er
'It
er
a5

on
'

(s
ec
on

ds
)'

Number'of'Compute'Nodes'

Cray'XC30'(112Xe)'

Original#

Op3mized#

Speedup#

0.00#

0.50#

1.00#

1.50#

2.00#

2.50#

3.00#

1.0#

10.0#

100.0#

1000.0#

256# 512# 1024# 2048# 4096#

Sp
ee
du

ps
'

La
nc
zo
s'
Ti
m
es
'P
er
'It
er
a5

on
'

(s
ec
on

ds
)'

Number'of'Compute'Nodes'

IBM'BG/Q(112Xe)'

Original#
Op4mized#
Speedup#

0.00#

2.00#

4.00#

6.00#

8.00#

1.0#

10.0#

100.0#

1000.0#

128# 256# 512# 1024# 2048# 4096#

Sp
ee
du

ps
'

La
nc
zo
s'
Ti
m
es
'P
er
'It
er
a5

on
'

(s
ec
on

ds
)'

Number'of'of'Compute'Nodes'

IBM'BG/Q'(132Cs)'

Original#
Op3mized#
Speedup#

Performance Optimization and Results
v Initially, performance was impaired by matvec load imbalance and a lack

of scalability in Lanczos reorthogonalization

v Applied a series of on-node and inter-node optimizations…

1.  Using empirical performance observations to load balance
OpBundles (nonzeros)

2.  Tuning MPI+OpenMP for each machine/scale
3.  Fusing collectives… MPI_Reduce+MPI_scatter ⎝ custom P2P

MPI_reduce_scatter
4.  Using empirically-tuned reduced concurrency for reorthogonalization

v Overall, we improved scalability and performance by 1.3x - 8x.
v Future work will continue load balancing optimizations as well as move to

NERSC’s forthcoming Cori supercomputer

BIGSTICK

Hongzhang Shan, Samuel Williams
Lawrence Berkeley National Lab

Kenneth McElvain
UC Berkeley

Calvin W. Johnson
San Diego State University

XGC1

Eduardo D’Azevedo, Sarat Sreepathi,
Patrick Worley

Oak Ridge National Lab

Choong-Seock Chang, Robert Hager,
Seung-Hoe Ku, Jianying Lang
Princeton Plasma Physics Lab

Eisung Yoon
Rensselaer Polytechnic Institute

Background
v Center for Edge Physics Simulation (EPSi) FES SciDAC Partnership (PI:

C-S Chang)

v Continued performance optimization and engineering for XGC1 and
XGCa plasma microturbulence particle-in-cell simulation codes.

v Initial implementation of new nonlinear Fokker-Planck collision solver was
too costly to be used in production. Diagnosis indicated opportunities to
improve performance by decreasing serial complexity, improving
OpenMP threading, and improving load imbalance.

v At scale, MPI communication overhead is non-negligible and also
sensitive to network topology of allocated nodes.

Performance Optimization of Collision Operator
v All three performance optimization thrusts were investigated

simultaneously.

v E. S. Yoon developed a series of increasingly more computationally
efficient implementations, decreasing the cost of the collision operator in a
realistic run by a factor of 3X.

v Outside of the collision operator, XGC1/XGCa makes effective use of
OpenMP parallelism. In the collision operator there is insufficient work in a
single grid cell to fully exploit OpenMP threading. By moving to threadsafe
linear solvers, we were able to also introduce threading at a higher level,
to the loop over cells. This is implemented with a nested OpenMP
formulation, with the number of threads at each level a runtime
performance tuning option.

v Collision operator exhibits significant load imbalance relative to the grid
decomposition that load balances the particle distribution. Moreover, both
particle and collision operator load imbalances evolve with the simulation.
A new load balancing strategy was developed to address the combined
particle and collision operator load imbalances:

v  balance collision cost subject to constraint on particle load imbalance

v optimize XGC1 performance by varying constraint periodically,
converging to the optimum if distributions are static and adapting to
the changing distributions otherwise

Performance impact of nested OpenMP. Change from no outer threading to
8 outer and 2 inner threads in collision operator in June 2015 large Titan
runs demonstrates 5.5X per process improvement in collision operator,
reducing model runtime by over 2X. (Both E. S. Yoon’s optimizations and
load balancing enabled in these results.)

Performance Optimization of MPI communication
v Goal is to optimize task placement of XGC1 to account for application

communication characteristics and physical node layout of allocated
jobs on DOE Leadership Computing Systems.

v Job scheduling system on Titan (and many other systems) allocates non-
contiguous nodes to jobs. Default MPI ordering does not account for
actual physical node layout available to application, resulting in degraded
performance.

v Initial approach has been a two phase optimization strategy: (a) collect
communication profile of XGC1 using mpiP, (b) optimize MPI task
mapping by coupling application communication graph with locality
information of allocated nodes. As part of this, have developed and
experimented with various reordering algorithms, including spectral
bisection, neighbor join tree etc.

v Preliminary results: 12-15% improvement in communication
performance.

Left: Example load imbalance in collision operator cost, comparing load
balancing only particle distribution with also load balancing collision cost.
Cost is summed over rows of virtual 2D processor grid. Full model
performance improvement was 30% for this example. Right: Performance
improvement in June 2015 Titan ITER experiments between first step
using only particle load balancing and second step that also balances
collision cost.

Communication volumes of XGC1 using interplane-major mapping and
poloidal decomposition within the plane in two scenarios (512 ranks) (left)
default MPI ordering and (right) reordered MPI tasks using spectral
bisection with weighted Laplacian technique. The axes represent source
and destination MPI ranks.

0
50

100
150
200
250
300
350
400
450
500

256 512 1024 512 1024 2048 512 1024 2048

Edison (Xeon) Mira (BGQ) Titan(w/GPUs)

Ti
m

e
(s

ec
on

ds
)

other
Cyclic Reshuffle
MPI Broadcast
PCIe
DGEMM

Edison (Xeon) Mira (BGQ) Titan (w/GPUs)
compute nodes compute nodes compute nodes

LibTensor/CTF Strong Scaling

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0 50 100 150 200 250

R
el

at
iv

e
co

lli
si

on
 ru

nt
im

e
su

m
m

ed
 a

cr
os

s
ro

w
s

Logical processor grid column id

XGC1 Performance: Load Balancing Both Collision Cost and Particles

DIII-D grid, 10B ions and 10B electrons
Titan: Cray XK7 (16-core CPU, 1 GPU per node)

4096 nodes, 8192 processes, 8-way threading
Particle-Only Load Balancing

Hybrid Collision-Particle Load Balancing

CAM / MPI_Alltoallv

Patrick Worley
Oak Ridge National Lab

Background
v Applying Computationally Efficient Schemes for BioGeochemical Cycles

(ACES4BGC) BER SciDAC Partnership (PI: F. Hoffman). Also relevant to
Multiscale Methods for Accurate, Efficient, and Scale-Aware Models of the
Earth System (PI: W. Collins)

v The Community Atmosphere Model (CAM), used in both the Community Earth
System Model (CESM) and the Accelerated Climate Model for Energy
(ACME), has an effective load balancing scheme, remapping work as needed
between computation of the dynamics and of the physical parameterizations.

v The effectiveness of load balancing depends on the relative cost of
associated MPI communication. Algorithm typically uses MPI_Alltoallv but a
tunable point-to-point (P2P) implementation is also supported.

v April 2015 experiments on Titan, the Cray XK7 at the Oak Ridge Leadership
Computing Facility, demonstrated unexpectedly high MPI_Alltoallv cost in the
load balancing algorithm, resulting in a 1.4X slowdown for a high resolution
simulation as compared to not using load balancing.

v Evaluate MPI_Alltoallv and P2P implementation in standalone kernel using
message pattern extracted from CAM load balancing example.

–  14400 processes, 8 processes per node, vector lengths 33,000 to
63,000, individual messages 850 to 3600 doubles, per process send
(receives): 12 to 56

–  On Titan, a P2P algorithm is fastest, and the vendor optimizations hurt
performance on one platform. On Mira, P2P is slightly faster, but vendor
optimized MPI_Alltoallv is competitive.

Conclusion
v  Message pattern can matter, and optimizations for standard usage may hurt

in special cases.

 0.01

 0.1

 1

1 2 3 4

Se
co

nd
s

fo
r F

or
w

ar
d

an
d

In
ve

rs
e

Experiment Order (in same job)

Titan: Cray XK7 (16-core CPU, 1 GPU per node)
1800 nodes, 14400 processes, 8 processes per node

Exchanging up to 3600 REAL*8 with up to 56 processes
MPI_AlltoAllv (Cray optimized)

MPI_AlltoAllv (no Cray optimizations)
MPI_Sendrecv algorithm

tuned point-to-point algorithm

 0.01

 0.1

 1

 10

1 2 3 4

Se
co

nd
s

fo
r F

or
w

ar
d

an
d

In
ve

rs
e

Experiment Order (in same job)

Mira: IBM BG/Q (16-core CPU)
1800 nodes, 14400 processes, 8 processes per node

Exchanging up to 3600 REAL*8 with up to 56 processes
MPI_Sendrecv algorithm

MPI_AlltoAllv (no IBM optimizations)
MPI_AlltoAllv (IBM optimized)
tuned point-to-point algorithm

Approach and Results
v Repeat CAM load balancing experiment using P2P implementation.

–  Performance is much improved on Titan. Load balancing now improves
performance.

v Evaluate MPI_Alltoallv and P2P implementation in standalone kernel using a
uniform distribution, measuring forward and inverse together

–  14400 processes, 8 processes per node, vector length 51,840,000,
individual message size 3600 doubles

–  Cray optimized MPI_Alltoallv performs best on Titan, but P2P is faster on
Mira. Does not explain CAM load balancing performance issues.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 3 4

Se
co

nd
s

fo
r F

or
w

ar
d

an
d

In
ve

rs
e

Experiment Order (in same job)

Titan: Cray XK7 (16-core CPU, 1 GPU per node)
1800 nodes, 14400 processes, 8 processes per node

Exchanging 3600 REAL*8 with each process
MPI_Sendrecv algorithm

MPI_AlltoAllv (no Cray optimizations)
tuned point-to-point algorithm
MPI_AlltoAllv (Cray optimized)

 0

 5

 10

 15

 20

 25

1 2 3 4

Se
co

nd
s

fo
r F

or
w

ar
d

an
d

In
ve

rs
e

Experiment Order (in same job)

Mira: IBM BG/Q (16-core CPU)
1800 nodes, 14400 processes, 8 processes per node

Exchanging 3600 REAL*8 with each process
MPI_AlltoAllv (no IBM optimizations)

MPI_AlltoAllv (IBM optimized)
MPI_Sendrecv algorithm

tuned point-to-point algorithm

Awards of computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under contract DE-
AC02-06CH11357. This research also used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725. This research also used resources of the National Energy Research Scientific Computing Center, a

DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Activities and Impacts

Background

v Developing Electron-Correlated Methods for Excited State Structure
and Dynamics in the NWChem Software Suite BES SciDAC
Partnership (PI: Christopher J. Cramer)

v Goal: Accelerate NWChem performance by implementing thread-level
parallelism on the Intel Phi many-core architecture.

v Examined two important NWChem modules: Coupled Cluster Triples
Algorithm CCSD(T) & Fock Matrix Constructions of TEXAS integral.

v Optimization insights shared with community via NERSC training

PROGRESS:

SUPER Institute collaboration to integrate OpenMP parallelism
§  Native mode optimization to prepare for next-generation NERSC8

Cori
§  Threading is essential to exploit full capability of MIC architecture
Performance of triples part of CCSD(T) improved 65x over original flat
MPI implementation
§  Flat MPI constrained to single process because of memory limitation
Performance of Fock matrix construction improved 1.64x over original
flat MPI
§  Flat MPI constrained to 60 MPI processes

112

62
30

10

100

1000

10000

1 2 4 8 16 32 60 120 180 240

R
un

 T
im

e
(s

ec
on

ds
)

OMP_NUM_THREADS

Optimized OpenMP

Total Time
Time in Loop Nests
Time in GetBlock

Optimized OpenMP CCSD(T) run time, showing an overall speedup
of 2.5x compared with the original threaded implementation, and a
65x speedup over the flat MPI version which is limited to a single
process due to memory constraints

Performance of Fock Matrix Construction using our three
approaches. The flat MPI implementation is limited to 60
processes, while the threaded version can use all 240 hardware
thread contexts and results in a 1.64x speedup

72

71

183

54

10

100

1000

10000

1 2 4 8 16 32 60 120 180 240

To
ta

l R
un

 T
im

e
 (s

ec
on

ds
)

Total Hardware Thread Concurrency

Fock Matrix Construction Time

Flat MPI
OpenMP #1 (integrals)
OpenMP #2 (module-level)
OpenMP #3 (OpenMP tasks)

NWChem OpenMP Threading

Hongzhang Shan, Bert de Jong, Lenny Oliker,, Samuel Williams
Lawrence Berkeley National Lab

Background
v MPAS (Model for Prediction Across Scales) is a multi-scale climate

modeling framework developed at LANL and NCAR.

v MPAS-Ocean core uses Voronoi tessellation based unstructured grids.
It has the benefits of providing multi-resolution and quasi-uniform grid
properties at the same time to facilitate better simulations.

v Unstructured grids have a negative impact on performance due to
factors such as non-obvious domain decomposition, parallel load
imbalance, unordered data and irregular memory access patterns.

v MPAS-Ocean utilizes deep halo regions on the grid. These magnify
the load imbalance factor significantly.

v MPAS-Ocean performance was analyzed on DOE supercomputer,
Edison, a Cray XC30 at NERSC.

Performance Optimization and Results
v Developed a weighted halo-aware grid partitioning scheme based on

iterative refinement of the partitions using halo information. Using
hence generated grid partitioning resulted in improved scaling at high
concurrencies.

v Implemented Space Filling Curve based data reordering (Hilbert SFC,
Morton ordering) for the grid elements to improve data locality.

v Performance improvement due to the new partitioning scheme is more
significant at high concurrencies due to better load balancing.

v Performance improvements due to data reordering is significant at low
concurrencies, but the effect diminishes with increasing concurrency.

v With the new partitioning scheme and data reordering, we achieved
overall performance speedup of up to 2.2x for the MPAS-Ocean core.

v Future work involves incorporation of multi-level OpenMP threading for
improved parallelism and scaling. It also involves vectorization and
porting the ocean core onto the many-core Intel Phi processors.

Reduction in the number of cache
misses using the SFC-based data
reordering

Runtime speedup using SFC
ordered data relative to the
original data ordering

MPAS-Ocean

Abhinav Sarje, Samuel Williams, Leonid Oliker
Lawrence Berkeley National Lab

Douglas Jacobsen
Los Alamos National Lab

Sukhyun Song, Jeffrey Hollingsworth
University of Maryland

Kevin Huck, Allen Malony
University of Oregon

NWChem CCSD
Data-flow Implementation

Anthony Danalis, Heike McCraw, George Bosilca
University of Tennessee

Objective

v Increase scalability and performance by porting
CCSD of NWChem to a data-flow representation.

Accomplishments:

All time-consuming routines of NWChem’s CCSD have been
converted to a dataflow representation.

Modified version of CCSD was integrated into NWChem for
seamless execution.

Integrated version of modified CCSD achieves more than 2x
performance improvement.

Beyond performance gains, the dataflow version of NWChem can
utilize PaRSEC’s performance analysis tools that have task level
granularity.

Performance improvement of dataflow version (executing over PaRSEC)
in comparison to original MPI code for entire CCSD. The modified code

yields 2x higher performance and keeps scaling until all 16 cores of all
64 nodes have been utilized in contrast with original code.

 0

 500

 1000

 1500

 2000

 2500

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
xe

cu
tio

n
 T

im
e
 (

se
c)

Cores/Node

Original 64
PaRSEC 64

Analysis and Visualization of
MPAS-Ocean Performance Data

Kevin Huck, (SUPER), Hank Childs (SDAV), Allen Malony (SUPER)
University of Oregon

Background
v SUPER and SDAV collaboration.

v Objective was to Map TAU performance measurements to the MPAS-
Ocean spatial domain to assist in optimization of partition strategies

Progress and Accomplishments
v Demonstrated that the load imbalance problem is correlated with

variability among partition block size due to relatively large halo
regions

v Visualizations also show that vertical depth, coastlines and number of
neighbors likely affect computation, communication times

v Hindsight partition refinement using block+halo weights reduced mean
MPI_Wait times by 40%, and overall execution time up to 15%

v Workshop publication: Huck et al., “Linking Performance Data into
Scientific Visualization Tools”, Visual Performance Analytics at SC’14

Impacts
v Successfully integrated TAU performance measurement data with

application scientific data in VisIt

v Contributed directly to reduction in execution timer, for example up to
15% for 60km resolution case on 256 processors.

min: 473, max: 846 Total Cells per Block min: 535, max: 771

min: 83s, max: 250s Computation Time min: 98s, max: 240s

min: 27s, max: 190s MPI_Wait Time min: 9s, max: 150s

Original Partitions Refined Partitions

•  Xolotl outperformed Paraspace on full problem, scaled well when increasing
problem size, but…
–  …Paraspace computes more time steps at higher accuracy

(hypothesized)
–  Currently testing relaxed Paraspace solver tolerances that reduce

number of time steps but may also reduce accuracy
•  Working on threading/GPU optimizations for Xolotl

–  Targeting 2D and 3D problems
–  Little improvement expected for 1D problems including the one used in

this performance comparison

Time required to run 10 Xolotl time
steps, Hyper-threading enabled

Time required to run 5 Paraspace output
time steps, Hyper-threading enabled

Figure 6: Number of intermediate PARASPACE time steps per interval between output time
steps.

Metric Xolotl PARASPACE
Elapsed time (s) 520.32 3548.54
Number of time steps 104 227
Throughput (time steps/s) 0.200 0.0640

Table 2: Time required to simulate the full He retention in W100 problem on one compute node.

1. when producing the same number of results; and
2. when executing approximately the same number of time steps.

In the first case, the programs are solving the same scientific problem and producing scientifically
equivalent results, but it can be argued that they are not doing equivalent amounts of work (in
terms of number of time steps). In the second case, the two programs are doing the same amount
of work in terms of time steps, but Xolotl is producing more scientific results. Furthermore, it is
interesting to compare performance when restricting Xolotl to use the same computation resources
as PARASPACE (one compute node), but also to interesting to compare when Xolotl is allowed to
use as many compute nodes as it can support.

Table 2 shows the time required for both programs to complete a simulation run with the
same number of output steps (i.e., the scenario where they are producing scientifically equivalent
results). Looking at the results from the perspective of the time required to compute equivalent
scientific results, Xolotl was 6 times faster than PARASPACE (8:40.32 vs. 59:08.54) when running
on the same hardware. Table 2 also indicates the number of actual time steps computed by each
program during the run, and program’s throughput in terms of timesteps per second. This last
metric is useful for making the comparison described in the second scenario, because it normalizes
the performance measure to be independent of the number of time steps computed. From this
perspective, Xolotl’s throughput was 3.12 times greater than that of PARASPACE when computing
our full problem on the same hardware.

Despite our attempts to reconcile di�erences between the two programs, two factors should still
be taken into account with respect to these timing and throughput results. First, at each output

12

Time required to simulate full He retention in W100 problem on one
Eos compute node

Time required to
simulate full He
retention in W100
problem on one Eos
compute node with
varying numbers of
grid points

•  Recently compared Xolotl performance and scalability against that of
Paraspace
–  Paraspace: PARAllel SPAtially-dependent Cluster Evolution

•  Implements parallel cluster dynamics with spatial dependence
by solving reaction diffusion equation with incident flux

•  Mature code, but limited to 1D and OpenMP only
–  Used both programs to simulate same simulation problem

•  Helium retention in Tungsten diverter wall with incident He flux
of 4x1025 He/m2/s for 1x10-6 seconds

•  Used several 1D data discretizations (mainly nx=256, dx=0.25)
•  Ran on Eos, a Cray XC30 within the Oak Ridge Leadership

Computing Facility
–  Two eight-core Intel E6-2670 processors at 2.6GHz per

node, Hyper-Threading supported
–  64 GB SDRAM per node
–  Aries interconnection network

•  Determined best run-time configuration
–  Xolotl: 32 single-threaded processes per node (Hyper-Threading

enabled), process affinity to NUMA node, and 16 processes per
NUMA node

–  Paraspace: 32 threads (Hyper-Threading enabled), affinity to
NUMA node

Xolotl/Paraspace
Performance Comparison

Phillip C. Roth
Oak Ridge National Lab

•  Xolotl plasma surface interactions simulator
–  New code being developed as part of Plasma

Surface Interactions FES SciDAC Partnership
(PI: Brian Wirth)

–  Continuum model for solving cluster dynamics
advection-diffusion-reaction equation with
incident flux

–  Support for 1D, 2D, and 3D problems
–  Uses PETSc solver
–  MPI only
–  Open source, publicly available via

SourceForge

