
Dynamic Partitioning Using
Mesh Adjacencies

Parallel unstructured mesh-based applications running on the latest petascale systems require partitions optimizing specific balance metrics. Methods
combining the most powerful graph based and geometric methods with diffusive methods directly operating on the unstructured mesh are discussed.

Partitions with over one million parts for meshes of several billion elements were generated on ALCF’s Mira Blue Gene/Q.	

More Information: http://www.scorec.rpi.edu/parma or contact Cameron Smith, smithc11@rpi.edu

•  ***

•  ****

Closing Remarks
ParMA diffusive improvement combined with local and global graph
and geometric partitioners provides a scalable partitioning solution
for meshes with over one million parts and several billion elements.
Ongoing efforts
•  Controlling partition model topology – elimination of small part

boundaries, gradient diffusion.

FASTMath Team Members: Cameron W. Smith 1, Michel Rasquin 2, Dan A. Ibanez 1, Gerrett Diamond 1, Kenneth E. Jansen 2, and Mark S. Shephard 1
 1Rensselaer Polytechnic Institute, USA 2University of Colorado Boulder, USA

1 - “Dynamic load balancing in computational mechanics”, Bruce Hendrickson and Karen Devine, 2000
2 - “A refinement-tree based partitioning method for dynamic load balancing with adaptively refined grids", William F. Mitchell, 2007

ParMA: Partitioning using Mesh Adjacencies
Guide partitioning decisions with mesh adjacency information
•  Mesh and partition model adjacencies represent application data

more completely then standard (hyper)graph-partitioning models.
•  All mesh entities can be considered, while graph-partitioning

models use only a subset of mesh adjacency information.
•  Any adjacency can be obtained in O(1) time with the use of a

complete mesh adjacency structure.
Advantages
•  Avoid graph construction
•  Directly account for multiple entity types important

for the solve process - typically the most
computationally expensive step

•  Easy to use with diffusive procedures
Disadvantage
•  Lack of well developed algorithms for global

parallel partitioning operations directly from mesh adjacencies

Complete mesh
adjacency structure.

.	

Dynamic Partitioning of Unstructured Meshes
Tools for re-partitioning an unstructured mesh due to changing work
loads or communication patterns are required to [1]:
•  Balance work, reduce communications, output distribution,

execute in parallel quickly, use little memory, and provide API
Graph and hypergraph based partitioners
•  Produce balanced partitions with

low cuts but have limited scalability
•  Use one order of mesh entity as the

graph nodes, hence the balance of
other mesh entities may not be optimal

Geometric partitioners
•  Inexpensive and scalable vs

(hyper)graph at cost of larger cuts
Diffusive partitioners
•  Quickly reduce small imbalances
Local partitioners
•  Consider intra-process relations only

Diffusive Improvement
Approach
•  Iteratively migrate small sets of elements from imbalanced parts

to less imbalanced parts to reduce the peak imbalance.
•  Stop when improvements to the imbalance and cut are small

•  Select elements for migration that will reduce the imbalance and
reduce the number of mesh entities on the part boundaries.

Iteration Stages
•  Weight computation – compute weights and exchange with peers
•  Targeting – determined how much weight each peer can accept
•  Element selection – select elements for migration
•  Migration – move elements to peers

Partitioning to One Million Parts
Multiple tools needed to maintain partition quality at scale
•  Local and global topological and geometric methods
ParMA quickly reduces large imbalances and improves part shape
•  Partitioning 1.6B element mesh from 128K to 1M parts then

running ParMA. 128K partition has less than 7% imbalance for
all entity orders.
•  Global RIB – 103 seconds ParMA – 20 seconds to:

209% vtx imb reduced to 6%, perfect elm imb increased to
4%, and 5.5% reduction in avg vtx per part

•  Local ParMETIS – 9.0 seconds. ParMA – 9.4 seconds to:
63% vtx imb reduced to 5%,
12% elm imb reduced to 4%,
and 2% reduction in avg vtx

Coarse mesh of RPI
Formula Hybrid

2014 suspension
upright.

Selects small groups of elements bounded by a vertex on the part
boundary

Evaluate vertices in descending order of distance from the parts
topological center
•  The elements in a part are not necessarily connected – sets of

elements may not be reachable from other sets via adjacencies
•  Connected components are identified and sorted in descending

order of their depth – as determined by a breadth-first traversal
from its boundary vertices

•  Dijkstra’s algorithm is ran from one of the max depth vertices of
each component to determine the graph distance to each vertex

•  Distances are offset to avoid overlapping ranges
•  During the first iteration distances are computed – subsequent

iterations simply update the migrated vertices

Element Selection

Vertex bounded elements selected for migration. A circle marks vertices on the part boundary,
a square marks interior vertices, and a disc marks the element bounding vertex.

Connected components in one
of four parts of the MPAS 60km

ocean mesh. Dark shaded
elements are isolated and light

shaded elements are on a
different part.

Component core vertices.

3 - “Controlling Unstructured Mesh Partitions for Massively Parallel Simulations”, Min Zhou, et al., 2010

Geometric
recursive
inertial
bisection

Dual graph
partition

Mesh
Example of
partitioning
methods [2].

Global partitioning [3].

Local partitioning [3]. •  Partitioning 12.9B element mesh
from 128K (< 7% imb) to 1M
parts then running ParMA.
•  Local ParMETIS – 60 seconds.

ParMA – 36 seconds to:
35% vtx imb reduced to 5%,
11% elm imb reduced to 5%,
and 0.6% reduction in avg vtx

ParMA improves strong
scaling of PHASTA
•  1.2B elements, vertical

stabilizer geometry
•  >50% improvement at

128K and 256K cores
•  35% improvement

at 1M cores

Vertical
Stabilizer

