Dynamic Partitioning Using Mesh Adjacencies

FASTMath Team Members: Cameron W. Smith ${ }^{1}$, Michel Rasquin ${ }^{2}$, Dan A. Ibanez ${ }^{1}$, Gerrett Diamond ${ }^{1}$, Kenneth E. Jansen ${ }^{2}$, and Mark S. Shephard ${ }^{1}$ ${ }^{1}$ Rensselaer Polytechnic Institute, USA ${ }^{2}$ University of Colorado Boulder, USA

Parallel unstructured mesh-based applications running on the latest petascale systems require partitions optimizing specific balance metrics. Methods combining the most powerful graph based and geometric methods with diffusive methods directly operating on the unstructured mesh are discussed. Partitions with over one million parts for meshes of several billion elements were generated on ALCF's Mira Blue Gene/Q.

Dynamic Partitioning of Unstructured Meshes
Tools for re-partitioning an unstructured mesh due to changing work loads or communication patterns are required to [1]:

- Balance work, reduce communications, output distribution,
execute in parallel quickly, use little memory, and provide API
Graph and hypergraph based partitioners
Produce balanced partitions with
low cuts but have limited scalability
Use one order of mesh entity as the graph nodes, hence the balance of other mesh entities may not be optimal

- Inexpensive and scalable vs (hyper)graph at cost of larger cuts
Diffusive partitioners
- Quickly reduce small imbalances

Local partitioners

- Consider intra-process relations only

Diffusive Improvement

Approach
Iteratively migrate small sets of elements from imbalanced parts to less imbalanced parts to reduce the peak imbalance.

- Stop when improvements to the imbalance and cut are small Select elements for migration that will reduce the imbalance and reduce the number of mesh entities on the part boundaries.
Iteration Stages
- Weight computation - compute weights and exchange with peers - Targeting - determined how much weight each peer can accept - Element selection - select elements for migration

Migration - move elements to peers
Element Selection
Selects small groups of elements bounded by a vertex on the part Selects sm
boundary

Evaluate vertices in descending order of distance from the parts topological center
The elements in a part are not necessarily connected - sets of elements may not be reachable from other sets via adjacencies Connected components are identified and sorted in descending order of their depth - as determined by a breadth-first traversal from its boundary vertices
Dijkstra's algorithm is ran from one of the max depth vertices of each component to determine the graph distance to each vertex
Distances are offset to avoid overlapping ranges
During the first iteration distances are computed - subsequent iterations simply update the migrated vertices

Partitioning to One Million Parts

Multiple tools needed to maintain partition quality at scale

- Local and global topological and geometric methods

ParMA quickly reduces large imbalances and improves part shape

- Partitioning 1.6 B element mesh from 128 K to 1 M parts then running ParMA. 128K partition has less than 7% imbalance for all entity orders.
- Global RIB - 103 seconds ParMA - 20 seconds to:
209% vtx imb reduced to 6%, perfect elm imb increased to 4%, and 5.5% reduction in avg vtx per part
- Local ParMETIS - 9.0 seconds. ParMA - 9.4 seconds to:
63% vtx imb reduced to 5%,
12% elm imb reduced to 4%,
and 2% reduction in avg vtx
- Partitioning 12.9 B element mesh from 128 K ($<7 \% \mathrm{imb}$) to 1 M
parts then running ParMA.
- Local ParMETIS - 60 seconds. ParMA - 36 seconds to:
35% vtx imb reduced to 5%, 11% elm imb reduced to 5%, and 0.6% reduction in avg vtx
Guide partitioning decisions with mesh adjacency information Mesh and partition model adjacencies represent application data more completely then standard (hyper)graph-partitioning models. All mesh entities can be considered, while graph-partitioning models use only a subset of mesh adjacency information
Any adjacency can be obtained in O(1) time with the use of a complete mesh adjacency structure.

Advantages

Directly account for multiple entity types important for the solve process - typically the most computationally expensive step

- Easy to use with diffusive procedures

Disadvantage

- Lack of well developed algorithms for global $\begin{gathered}\text { Complete mesh } \\ \text { adjacency structure. }\end{gathered}$ parallel partitioning operations directly from mesh adjacencies

ParMA improves strong
scaling of PHASTA
1.2 B elements, vertical stabilizer geometry
$>50 \%$ improvement at 128 K and 256 K cores
35\% improvement
at 1 M cores

Closing Remarks

ParMA diffusive improvement combined with local and global graph and geometric partitioners provides a scalable partitioning solution for meshes with over one million parts and several billion elements. Ongoing efforts

- Controlling partition model topology - elimination of small part boundaries, gradient diffusion.

