
Dynamic Partitioning Using  
Mesh Adjacencies 

Parallel unstructured mesh-based applications running on the latest petascale systems require partitions optimizing specific balance metrics. Methods 
combining the most powerful graph based and geometric methods with diffusive methods directly operating on the unstructured mesh are discussed. 

Partitions with over one million parts for meshes of several billion elements were generated on ALCF’s Mira Blue Gene/Q.	  

More Information: http://www.scorec.rpi.edu/parma or contact Cameron Smith, smithc11@rpi.edu 
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Closing Remarks 
ParMA diffusive improvement combined with local and global graph 
and geometric partitioners provides a scalable partitioning solution 
for meshes with over one million parts and several billion elements. 
Ongoing efforts 
•  Controlling partition model topology – elimination of small part 

boundaries, gradient diffusion. 
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ParMA: Partitioning using Mesh Adjacencies 
Guide partitioning decisions with mesh adjacency information 
•  Mesh and partition model adjacencies represent application data 

more completely then standard (hyper)graph-partitioning models. 
•  All mesh entities can be considered, while graph-partitioning 

models use only a subset of mesh adjacency information. 
•  Any adjacency can be obtained in O(1) time with the use of a 

complete mesh adjacency structure. 
Advantages 
•  Avoid graph construction 
•  Directly account for multiple entity types important  

for the solve process - typically the most  
computationally expensive step 

•  Easy to use with diffusive procedures 
Disadvantage 
•  Lack of well developed algorithms for global  

parallel partitioning operations directly from mesh adjacencies 

Complete mesh  
adjacency structure. 
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Dynamic Partitioning of Unstructured Meshes 
Tools for re-partitioning an unstructured mesh due to changing work 
loads or communication patterns are required to [1]: 
•  Balance work, reduce communications, output distribution, 

execute in parallel quickly, use little memory, and provide API  
Graph and hypergraph based partitioners 
•  Produce balanced partitions with  

low cuts but have limited scalability 
•  Use one order of mesh entity as the  

graph nodes, hence the balance of  
other mesh entities may not be optimal 

Geometric partitioners 
•  Inexpensive and scalable vs  

(hyper)graph at cost of larger cuts 
Diffusive partitioners 
•  Quickly reduce small imbalances 
Local partitioners 
•  Consider intra-process relations only 

Diffusive Improvement 
Approach 
•  Iteratively migrate small sets of elements from imbalanced parts 

to less imbalanced parts to reduce the peak imbalance.  
•  Stop when improvements to the imbalance and cut are small 

•  Select elements for migration that will reduce the imbalance and 
reduce the number of mesh entities on the part boundaries. 

Iteration Stages 
•  Weight computation – compute weights and exchange with peers 
•  Targeting – determined how much weight each peer can accept 
•  Element selection – select elements for migration 
•  Migration – move elements to peers 
 

Partitioning to One Million Parts 
Multiple tools needed to maintain partition quality at scale 
•  Local and global topological and geometric methods 
ParMA quickly reduces large imbalances and improves part shape 
•  Partitioning 1.6B element mesh from 128K to 1M parts then 

running ParMA.  128K partition has less than 7% imbalance for 
all entity orders. 
•  Global RIB – 103 seconds    ParMA – 20 seconds to: 

209% vtx imb reduced to 6%, perfect elm imb increased to 
4%, and 5.5% reduction in avg vtx per part 

•  Local ParMETIS – 9.0 seconds.  ParMA – 9.4 seconds to: 
63% vtx imb reduced to 5%,  
12% elm imb reduced to 4%,  
and 2% reduction in avg vtx 
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Selects small groups of elements bounded by a vertex on the part 
boundary 

 
Evaluate vertices in descending order of distance from the parts 
topological center 
•  The elements in a part are not necessarily connected – sets of 

elements may not be reachable from other sets via adjacencies  
•  Connected components are identified and sorted in descending 

order of their depth – as determined by a breadth-first traversal 
from its boundary vertices 

•  Dijkstra’s algorithm is ran from one of the max depth vertices of 
each component to determine the  graph distance to each vertex 

•  Distances are offset to avoid overlapping ranges 
•  During the first iteration distances are computed – subsequent 

iterations simply update the migrated vertices 

Element Selection 

Vertex bounded elements selected for migration. A circle marks vertices on the part boundary, 
a square marks interior vertices, and a disc marks the element bounding vertex. 

Connected components in one 
of four parts of the MPAS 60km 

ocean mesh. Dark shaded 
elements are isolated and light 

shaded elements are on a 
different part. 

Component core vertices. 

3 - “Controlling Unstructured Mesh Partitions for Massively Parallel Simulations”, Min Zhou, et al., 2010 
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Global partitioning [3]. 

Local partitioning [3]. •  Partitioning 12.9B element mesh 
from 128K (< 7% imb) to 1M 
parts then running ParMA.   
•  Local ParMETIS – 60 seconds.  

ParMA – 36 seconds to: 
35% vtx imb reduced to 5%, 
11% elm imb reduced to 5%,  
and 0.6% reduction in avg vtx 

ParMA improves strong  
scaling of PHASTA 
•  1.2B elements, vertical 

stabilizer geometry 
•  >50% improvement at  

128K and 256K cores 
•  35% improvement  

at 1M cores 

Vertical  
Stabilizer 


