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Sierra - CORAL at LLNL

I The hardware:
I CPU: Multiple IBM Power 9 CPUs
I Accelerators: Multiple NVIDIA GPUs per CPU
I Interconnect: Coherent NVLINK/CAPI interface between CPUs and local GPUs

I Programming model: MPI+X, where X is OpenMP, CUDA or QUDA

I New tools and models are needed to address complex multi-level systems like Sierra
will be

I This is our work toward that goal
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Main Question

How can we address hierarchical memory and multiple accelerators with a single, unified extension

Our Solution: Memory Association and Work Partitioning

I Partition a range across threads or devices
I Parallel regions can be partitioned across threads,

much like a workshared loop
I Target for loops can be partitioned, rather than

scheduled, to split a loop across target devices

I Specify the association between input, output, and a
partitioned range by extending the map clause
I Add a mapping type option, to support indirect and

user-defined mappings
I Bind the partitioning to a mapped variable to

partition that variable along with the data

I Nest partitioned parallel or target regions to
address hierarchical memory systems

I Adaptively partition to achieve load-balance across the
devices

Manual Partitioning
1 float arr[WORK_SIZE] = {0};

2 #pragma omp parallel shared(arr)

3 {

4 int tid = omp_get_thread_num();

5 int nt = omp_get_num_threads();

6 int iters = WORK_SIZE / nt;

7 int start = tid * iters;

8 int end = start + iters;

9 do_work(start,end,arr);

10 }

Extended Partitioning
1 float arr[WORK_SIZE] = {0};

2 int start = 0;

3 int end = WORK_SIZE;

4 #pragma omp parallel map(tofrom: arr[:,id]) \

5 partition(adaptive: id=start; id<end; id++)

6 {

7 int tid = omp_get_thread_num();

8 int nt = omp_get_num_threads();

9 do_work(start,end,arr);

10 }

Example Usage: GEMM

1 float A[i_size][j_size], B[i_size][j_size];

2 float *C = (float*)malloc(sizeof(C[0])*i_size*j_size);

3 int C_stride = j_size, j_start = 0, j_end = j_size;

4 #pragma omp parallel proc_bind(spread) \

5 num_threads(omp_get_num_places()) \

6 partition(adaptive: j_id=j_start; j_id<j_end; ++j_id)\

7 map(to: A[0:i_size][:,j_id], B[0:i_size][0:j_size]) \

8 map(tofrom: C[0:i_size][:,j_id])

9 {

10 #pragma omp target teams distribute parallel for \

11 devices(OMP_TYPE_ALL,*) map(to: A[:][:], B[:,i][:])\

12 partition(adaptive) map(tofrom: C[:,i,C_stride][:])

13 for (int i = 0; i < i_size; ++i) {

14 #pragma omp bind_partition(j_id) // Optional

15 for (int j = j_start; j < j_end; ++j) {

16 float sum = 0.0;

17 for (int k = 0; k < k_size; ++k) {

18 sum += A[k][j] * B[i][k];

19 }

20 C[i * C_stride + j] = sum;

21 }

22 }

23 }

Lines 4-5 Create one thread on each OpenMP “place” and
partition the devices across them

Line 6 Partition the range j start to j end across devices,
binding the device’s range to j id, partitioning the
inner loop

Line 7 Map the B matrix in completely, partition the columns
of the A matrix according to j id

Line 8 Map the C matrix in partitioning the columns with
range j id

Line 11 Split this target across all devices, map in all of A
from the outer partitioning and partition B by rows

Line 12 Partition the outer loop with the adaptive schedule,
binding the range to i, map C in and out partitioned
to match the i range with the new stride stored in
C stride

Line 14 Bind the timing of the j id partitioning to the inner
loop

Custom associations

General user-defined data association support with pipelining:
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Memory Association Types

{
{Place 0

Place 1

CPU 0
CPU 1

GPU 0 GPU 1

CPU 5
CPU 6

GPU 2 GPU 3

2D Array: Segmented Array:

Target array:

Segments array:
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Results: Co-Scheduling Performance
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Results: Data-movement Cost of Frequent Re-Balancing
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Results: Memory-Movement Optimization
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Pursuing Lattice QCD on Sierra and Beyond

I We are coordinating to apply this approach to Lattice QCD applications as part of
the CalLat project, preparing to address the next generation of hardware not just for
Sierra, but portably across the full range of next-generation supercomputers

I Memory association decouples data mapping from devices, allowing the runtime to
mutate the data however is most appropriate

I Our prototype achieves up to a 50× speedup over eight core CPU with four GPUs,
and we show a nearly 2× speedup for a previously averse benchmark as well

Prepared by LLNL under Contract DE-AC52-07NA27344 (LLNL-POST-674449)


