
Planning for the CORAL LLNL Sierra Supercomputer and Locality-Aware Memory Association for
Multi-Target Worksharing in OpenMP

Thomas R. W. Scogland? Bronis R. de Supinski?

scogland1@llnl.gov bronis@llnl.gov
?Lawrence Livermore National Laboratory, Livermore, CA 94551 †Department of Computer Science, Virginia Tech, Blacksburg, VA 24060 USA. USA

SciDAC-3 CalLat

Sierra - CORAL at LLNL

I The hardware:
I CPU: Multiple IBM Power 9 CPUs
I Accelerators: Multiple NVIDIA GPUs per CPU
I Interconnect: Coherent NVLINK/CAPI interface between CPUs and local GPUs

I Programming model: MPI+X, where X is OpenMP, CUDA or QUDA

I New tools and models are needed to address complex multi-level systems like Sierra
will be

I This is our work toward that goal

Coral Sierra Mock-Up

Die 0

Core 0 Core 1 Core 2 Core 3

Core 7Core 6Core 5Core 4

Core 8 Core 9 Core 10 Core 11

Memory Node 0 Memory Node 1

GPU 0

GPU 1

GPU
memory

GPU
memory

GPU 3

GPU 4

GPU
memory

GPU
memory

Die 1

Core 0 Core 1 Core 2 Core 3

Core 7Core 6Core 5Core 4

Core 8 Core 9 Core 10 Core 11

GPU 2

GPU
memory

GPU 5

GPU
memory

Main Question

How can we address hierarchical memory and multiple accelerators with a single, unified extension

Our Solution: Memory Association and Work Partitioning

I Partition a range across threads or devices
I Parallel regions can be partitioned across threads,

much like a workshared loop
I Target for loops can be partitioned, rather than

scheduled, to split a loop across target devices

I Specify the association between input, output, and a
partitioned range by extending the map clause
I Add a mapping type option, to support indirect and

user-defined mappings
I Bind the partitioning to a mapped variable to

partition that variable along with the data

I Nest partitioned parallel or target regions to
address hierarchical memory systems

I Adaptively partition to achieve load-balance across the
devices

Manual Partitioning
1 float arr[WORK_SIZE] = {0};

2 #pragma omp parallel shared(arr)

3 {

4 int tid = omp_get_thread_num();

5 int nt = omp_get_num_threads();

6 int iters = WORK_SIZE / nt;

7 int start = tid * iters;

8 int end = start + iters;

9 do_work(start,end,arr);

10 }

Extended Partitioning
1 float arr[WORK_SIZE] = {0};

2 int start = 0;

3 int end = WORK_SIZE;

4 #pragma omp parallel map(tofrom: arr[:,id]) \

5 partition(adaptive: id=start; id<end; id++)

6 {

7 int tid = omp_get_thread_num();

8 int nt = omp_get_num_threads();

9 do_work(start,end,arr);

10 }

Example Usage: GEMM

1 float A[i_size][j_size], B[i_size][j_size];

2 float *C = (float*)malloc(sizeof(C[0])*i_size*j_size);

3 int C_stride = j_size, j_start = 0, j_end = j_size;

4 #pragma omp parallel proc_bind(spread) \

5 num_threads(omp_get_num_places()) \

6 partition(adaptive: j_id=j_start; j_id<j_end; ++j_id)\

7 map(to: A[0:i_size][:,j_id], B[0:i_size][0:j_size]) \

8 map(tofrom: C[0:i_size][:,j_id])

9 {

10 #pragma omp target teams distribute parallel for \

11 devices(OMP_TYPE_ALL,*) map(to: A[:][:], B[:,i][:])\

12 partition(adaptive) map(tofrom: C[:,i,C_stride][:])

13 for (int i = 0; i < i_size; ++i) {

14 #pragma omp bind_partition(j_id) // Optional

15 for (int j = j_start; j < j_end; ++j) {

16 float sum = 0.0;

17 for (int k = 0; k < k_size; ++k) {

18 sum += A[k][j] * B[i][k];

19 }

20 C[i * C_stride + j] = sum;

21 }

22 }

23 }

Lines 4-5 Create one thread on each OpenMP “place” and
partition the devices across them

Line 6 Partition the range j start to j end across devices,
binding the device’s range to j id, partitioning the
inner loop

Line 7 Map the B matrix in completely, partition the columns
of the A matrix according to j id

Line 8 Map the C matrix in partitioning the columns with
range j id

Line 11 Split this target across all devices, map in all of A
from the outer partitioning and partition B by rows

Line 12 Partition the outer loop with the adaptive schedule,
binding the range to i, map C in and out partitioned
to match the i range with the new stride stored in
C stride

Line 14 Bind the timing of the j id partitioning to the inner
loop

Custom associations

General user-defined data association support with pipelining:

Input data pack buffer

Target
memoryHost memory

Input buffer pack bufferPack in

Logical bitwise copy

Unpack
in

Host
execution

Target
execution

Target region

Output data pack buffer

Output buffer pack bufferUnpack
out

Logical bitwise copy

Pack
out

Memory Association Types

{
{Place 0

Place 1

CPU 0
CPU 1

GPU 0 GPU 1

CPU 5
CPU 6

GPU 2 GPU 3

2D Array: Segmented Array:

Target array:

Segments array:
12,16,5,15,10,7,8,11,4,1,9,12,6,10,3,9

Indexed Array:

Target array:

Index array:

Related Papers

[1] T. R. W. Scogland, B. R. de Supinski, and W. Feng. Locality-Aware Memory Association for Multi-Target Worksharing in OpenMP. In International Conference on Parallel Architectures and Compilation
Techniques, 2016, Under consideration.

[2] T. R. W. Scogland, W. Feng, B. Rountree, and B. R. de Supinski. CoreTSAR: Core task-size adapting runtime. IEEE Transactions on Parallel and Distributed Systems, 2014.

[3] T. R. W. Scogland, B. Rountree, W. Feng, and B. R. de Supinski. Heterogeneous Task Scheduling for Accelerated OpenMP. In International Parallel and Distributed Processing Symposium, pages 144–155.
IEEE Computer Society, May 2012.

[4] T. R. W. Scogland, B. Rountree, W. Feng, and B. R. de Supinski. CoreTSAR: Adaptive Worksharing for Heterogeneous Systems. In International Supercomputing Conference, Leipzig, June 2014.

Results: Co-Scheduling Performance

cg gem gemm

helmholtz helmholtz−nested

0.0

0.5

1.0

1.5

2.0

0.0

2.5

5.0

7.5

10.0

0

20

40

60

0.0

0.5

1.0

1.5

2.0

0.0

0.3

0.6

0.9

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4
Number of GPUs

S
pe

ed
up

 o
ve

r
8

co
re

 O
pe

nM
P

Devices and Scheduler cpu adaptive cpu,cuda adaptive cpu,cuda static cuda adaptive cuda static

Results: Data-movement Cost of Frequent Re-Balancing

0

5000

10000

1 2 3 4 5 10 20 30 40 50 60 70 80 90 100
Inner loop size

Ti
m

e
(m

illi
se

co
nd

s)

Time contribution compute input output

Helmholtz

Helmholtz-Nested

Results: Memory-Movement Optimization

Stream Bandwidth with NUMA
Policies

System 1 System 2

0.0

0.5

1.0

1.5

0

2

4

Add Copy Scale Triad Add Copy Scale Triad
Stream test

S
pe

ed
up

 o
ve

r
si

ng
le

−
no

de
 a

llo
ca

tio
n

Policy coherent interleave migrate optimal_first_touch replicate_all

GEMM QCD Kernel CPU-only with
NUMA Policies

adaptive static

0

50

100

150

200

250

False True False True
Partition by sockets, True, or directly by devices, False

T
im

e
(s

ec
on

ds
)

Policy coherent interleave migrate migrate_interleaved replicate_all

Pursuing Lattice QCD on Sierra and Beyond

I We are coordinating to apply this approach to Lattice QCD applications as part of
the CalLat project, preparing to address the next generation of hardware not just for
Sierra, but portably across the full range of next-generation supercomputers

I Memory association decouples data mapping from devices, allowing the runtime to
mutate the data however is most appropriate

I Our prototype achieves up to a 50× speedup over eight core CPU with four GPUs,
and we show a nearly 2× speedup for a previously averse benchmark as well

Prepared by LLNL under Contract DE-AC52-07NA27344 (LLNL-POST-674449)

