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 Quantum Chemistry Integrals 

Context 

Problem 2: Integrals in second-order  
many-body perturbation (MP2) theory 

•  Tackle singularities in integrands  
 using exponential sums 

 
 
 
 
 
 
 

 
 

 

      Problem 1: Integrals in perturbation theory 
     for anharmonic molecular vibrations 

 

•  Construct a separated approximation in a suitable (sparse) low rank 
tensor format 

 
 
 

 

•  The approximation can be constructed from samples of the function 
using Alternating Least-Squares algorithm 

•  Selection of suitable groupings of input parameters can be based on 
physics or a priori model information  

 

Key Ideas Illustrations 

Matthew Hermes, So Hirata    
University of Illinois at Urbana-Champaign 
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        Low rank approximation of  integrands  

        Low dimensional quadrature  

•  Evaluate integral of the function as sum of products of low 
dimensional integrals   

 

 
 

•  Low dimensional integrals can be evaluated using suitable 
quadrature rules 
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•  Accurate computational prediction of key molecular properties 
requires ab-initio electron or vibrational theories 
o  Ab initio = from first principles of quantum mechanics 
o  Density functional theory or the harmonic approximation 

  is not accurate enough 

•  Series of tensor contractions and dense matrix manipulations: 
non-scalable! 

•  Current state of the art : Monte-Carlo (MC) and its enhancements  
QUEST: Improve integration efficiency and scalability  

   via advanced UQ methods 

•  Prediction of vibrational energy levels of molecules involves first and 
second order corrections to zero point energy given by 

 
•  Both integrands involve wave functions proportional to product of 

exponential and Hermite polynomials leading to weight functions 
employed in MC importance sampling 

 
 

  

•  MP2 is the lowest member of the systematic series of many body 
perturbation approximations converging to the exact solution of 
Schrödinger equation. One of its energy components  

 where 
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•  Evaluating the above integral is challenged by singularities (inverse 
of distance) and by storage/scalability 

  

Current and Future Work 
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•  Automatic detection of sparsity pattern and variable regrouping  in 
low rank tensor subsets 

•  Scaling to larger systems, possibly polymers/solids  
•  Demonstration of low rank quadrature based approach for MP2 

integrals  

A high dimensional integral is estimated via  
several low dimensional integrals 
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•  Very accurate        approximation  
   using scaled quadrature 
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0 •        involves high order interactions 

   and hence not easy to approximate  
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Function H(x,x0) �V (x),�V (x0)
Grouping x̃k {xk, x

0
k} {xk}, {x0

k}
Basis  k(x̃k) Hermite Monomial
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Evaluated using Gauss Hermite quadrature rule
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