Low Rank Approximation-based Quadrature for Fast Evaluation of Multi-Particle Integrals

Prashant Rai, Khachik Sargsyan, Habib Najm Sandia National Laboratories

Matthew Hermes, So Hirata
University of Illinois at Urbana-Champaign

Quantum Chemistry Integrals

Context

- Accurate computational prediction of key molecular properties requires ab-initio electron or vibrational theories
- Ab initio = from first principles of quantum mechanics
- Density functional theory or the harmonic approximation is not accurate enough
- Series of tensor contractions and dense matrix manipulations: non-scalable!
- Current state of the art : Monte-Carlo (MC) and its enhancements \square QUEST: Improve integration efficiency and scalability via advanced UQ methods

Problem 1: Integrals in perturbation theory
for anharmonic molecular vibrations

- Prediction of vibrational energy levels of molecules involves first and second order corrections to zero point energy given by

$$
\begin{aligned}
& E_{0}^{(1)}=\int \Phi_{0}(\boldsymbol{x}) \Delta V(\boldsymbol{x}) \Phi_{0}(\boldsymbol{x}) d \boldsymbol{x} \\
& E_{0}^{(2)}=\iint e^{-\left\|\boldsymbol{\omega}^{\boldsymbol{T}} \boldsymbol{x}\right\|^{2}} \Delta V(\boldsymbol{x}) H\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) e^{-\left\|\boldsymbol{\omega}^{T} \boldsymbol{x}^{\prime}\right\|^{2}} \Delta V\left(\boldsymbol{x}^{\prime}\right) d \boldsymbol{x} d \boldsymbol{x}^{\prime}
\end{aligned}
$$

- Both integrands involve wave functions proportional to product of exponential and Hermite polynomials leading to weight functions employed in MC importance sampling
- Very accurate $E_{0}^{(1)}$ approximation $\cdot E_{0}^{(2)}$ involves high order interactions using scaled quadrature
and hence not easy to approximate

Problem 2: Integrals in second-order many-body perturbation (MP2) theory

- MP2 is the lowest member of the systematic series of many body perturbation approximations converging to the exact solution of Schrödinger equation. One of its energy components

$$
E_{1}^{(2)}=2 \sum_{i, j}^{\text {occ. vir. }} \sum_{a, b} \frac{\langle i j \mid a b\rangle\langle a b \mid i j\rangle}{\epsilon_{i}+\epsilon_{j}-\epsilon_{a}-\epsilon_{b}},
$$

where
$\langle p q \mid r s\rangle=\int d \mathbf{r}_{1} d \mathbf{r}_{2} \frac{\varphi_{p}^{*}\left(\mathbf{r}_{1}\right) \varphi_{q}^{*}\left(\mathbf{r}_{2}\right) \varphi_{r}\left(\mathbf{r}_{1}\right) \varphi_{s}\left(\mathbf{r}_{2}\right)}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|}, \varphi_{p}(\mathbf{r})=\sum_{\kappa} C_{p}^{\kappa} \chi_{\kappa}(\mathbf{r})$

- Evaluating the above integral is challenged by singularities (inverse of distance) and by storage/scalability

Key Ideas

Low rank approximation of integrands

- Construct a separated approximation in a suitable (sparse) low rank tensor format

$$
\begin{gathered}
f(\boldsymbol{x}) \approx \sum_{i=1}^{R} \prod_{k=1}^{m} f_{i}^{k}\left(\tilde{\boldsymbol{x}}_{k}\right), \tilde{\boldsymbol{x}}_{k} \subset \boldsymbol{x}=\left\{x_{1}, \ldots, x_{d}\right\}, \bigcup_{k=1}^{m} \tilde{\boldsymbol{x}}_{k}=\boldsymbol{x} \\
f_{i}^{k}\left(\tilde{\boldsymbol{x}}_{k}\right)=\sum_{j=1}^{n_{k}} v_{i, j}^{k} \psi_{j}^{k}\left(\tilde{\boldsymbol{x}}_{k}\right)=\left\langle\mathbf{v}_{i}^{k}, \psi^{k}\right\rangle ;\left\|\mathbf{v}_{i}^{k}\right\|_{1} \leq \lambda_{k}
\end{gathered}
$$

- The approximation can be constructed from samples of the function using Alternating Least-Squares algorithm
- Selection of suitable groupings of input parameters can be based on physics or a priori model information

Low dimensional quadrature

- Evaluate integral of the function as sum of products of low dimensional integrals

$$
\int_{\Omega_{\boldsymbol{x}}} f(\boldsymbol{x}) d \boldsymbol{x} \approx \sum_{i=1}^{R} \prod_{k=1}^{m} \int_{\Omega_{\tilde{\boldsymbol{x}}_{k}}} f_{i}^{k}\left(\tilde{\boldsymbol{x}}_{k}\right) d \tilde{\boldsymbol{x}}_{k}
$$

- Low dimensional integrals can be evaluated using suitable quadrature rules

$$
\int_{\Omega_{\tilde{\boldsymbol{x}}_{k}}} f_{i}^{k}\left(\tilde{\boldsymbol{x}}_{k}\right) d \tilde{\boldsymbol{x}}_{k} \approx \sum_{j=1}^{n} \omega_{j} f_{i}^{k}\left(\tilde{\boldsymbol{x}}_{k}^{j}\right)
$$

A high dimensional integral is estimated via several low dimensional integrals

$$
\begin{aligned}
& \text { (} \\
& I_{q r s}^{k}=\underbrace{\int_{\Omega_{x_{k}} \times \Omega_{x_{k}^{\prime}}} e^{-\sqrt{\omega_{k}}\left(x_{k}^{2}+x_{k}^{\prime}{ }^{2}\right)} \Delta V_{q}^{k}\left(x_{k}\right) H_{r}^{k}\left(x_{k}, x_{k}^{\prime}\right) \Delta V_{s}^{k}\left(x_{k}^{\prime}\right) d x_{k} d x_{k}^{\prime}} \\
& \text { Evaluated using Gauss Hermite quadrature rule } \\
& E_{0}^{(2)} \approx \sum_{q=1}^{Q} \sum_{r=1}^{R} \sum_{s=1}^{S} \prod_{k=1}^{m} I_{q r s}^{k} \\
& \text { Sample Size, } \mathrm{N}
\end{aligned}
$$

- Automatic detection of sparsity pattern and variable regrouping in low rank tensor subsets
- Scaling to larger systems, possibly polymers/solids
- Demonstration of low rank quadrature based approach for MP2 integrals

References

- M. Chevreuil, R. Lebrun, A. Nouy and P. Rai, "A least-squares method for sparse low rank approximation of multivariate functions", J Uncertainty Quantification, (Accepted)
- S. Yoo Willow, K. Kim and S. Hirata, "Stochastic evaluation of second-order many-body perturbation energies", J Chem Phys, 137, 204122, 2012.
- M. Hermes and S. Hirata, "Stochastic many-body perturbation theory for anharmonic molecular vibrations", J Chem Phys, 141, 084105, 2014.
(䢟) U.S. DEPARTMENT OF
Office of Science

