

Low Rank Approximation-based Quadrature for Fast Evaluation of Multi-Particle Integrals

- Ac rec

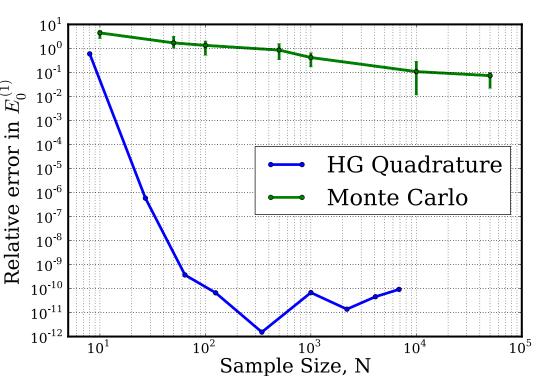
 - Ο
- Se no
- Cu

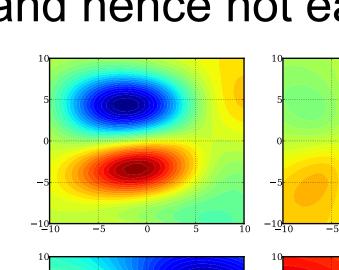
• Pre seo

Context
The computational prediction of key molecular properties
res albehild effective or vibrational theories
bittile - from first principles of quantum mochanics
ensity functional theory or the harmonic approximation
not accurate anough
so flersor contractions and dense matrix manipulations:
catabble
multiser the mole-Carlo (MC) and its enhancements
VELEST: Improve Integration efficiency and scalability:
**VELEST: Improve Integration integration involves first and
do order corrections to zoro point energy given by:**

$$h_0^{(1)} - \int h_0^{(1)} e^{\frac{\pi}{2}} = \frac{\pi}{2} h_0^{(1)} (\pi/4) (\pi/4)^{(1)} (\pi/4)^{(1)}$$

- Bot exp em
- Ver usi





• M S

$$E_1^{(2)} = 2 \sum_{i,j}^{\text{occ. vir.}} \sum_{a,b}^{\text{vir.}} \frac{\langle ij|ab\rangle \langle ab|ij\rangle}{\epsilon_i + \epsilon_j - \epsilon_a - \epsilon_b},$$

Quantum Chemistry IntegralsKey IdeasContextContextCuriale computational prediction of key molecular properties
spires ab-initio electron or vibrational theoriesConstruct a separated approximation in a suitable (sparse) to
those formation in the surface of up matrix manipulations:
n-scatabale
metric of tensor contractions and dense matrix manipulations:
n-scatabale
metric of tensor contractions and dense matrix manipulations:
n-scatabale
metric of tensor contractions and dense matrix manipulations:
n-scatabale
metric of tensor contractions and dense matrix manipulations:
n-scatabale
metric of tensor contractions and dense matrix manipulations:
n-scatabale
metric of ensor contractions and dense matrix manipulations:
n-scatabale
metric of ensor contractions and dense matrix manipulations:
n-scatabale
metric of ensor contractions and dense matrix manipulations:
preventing tensor formation
metric of ensor contractions and dense matrix manipulations:
n-scatabale
metric of ensor contractions and bene metry given by

$$F_0^{(1)} = \int_{-1}^{\infty} f_0^{(1)} f_0^{(1)} f_0^{(1)} f_0^{(1)} f_0^{(2)} f_0^{(1)} f_0^{(2)} f_0^$$

• Evaluating the above integral is challenged by singularities (inverse of distance) and by storage/scalability

Prashant Rai, Khachik Sargsyan, Habib Najm Sandia National Laboratories

Support for this work was provided through the Scientific Discovery through Advanced Computing (SciDAC) project funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

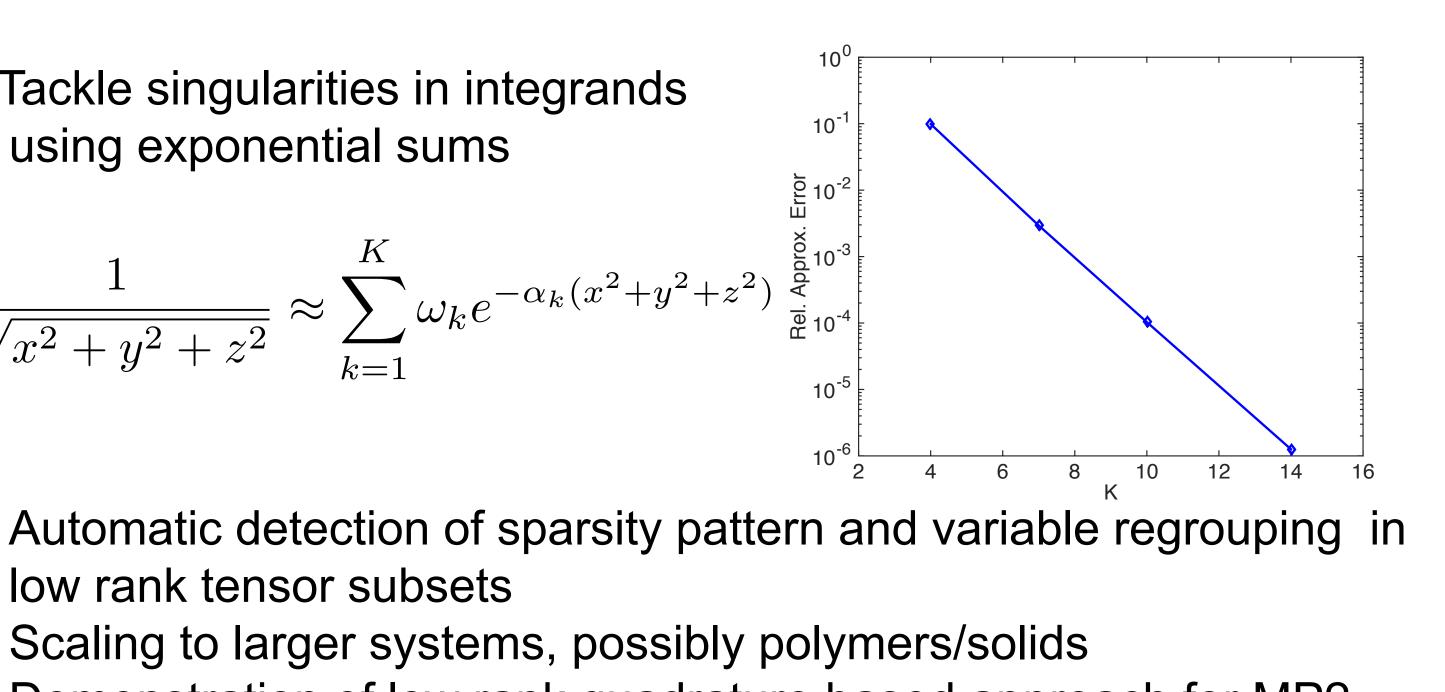
> • Demonstration of low rank quadrature based approach for MP2 integrals

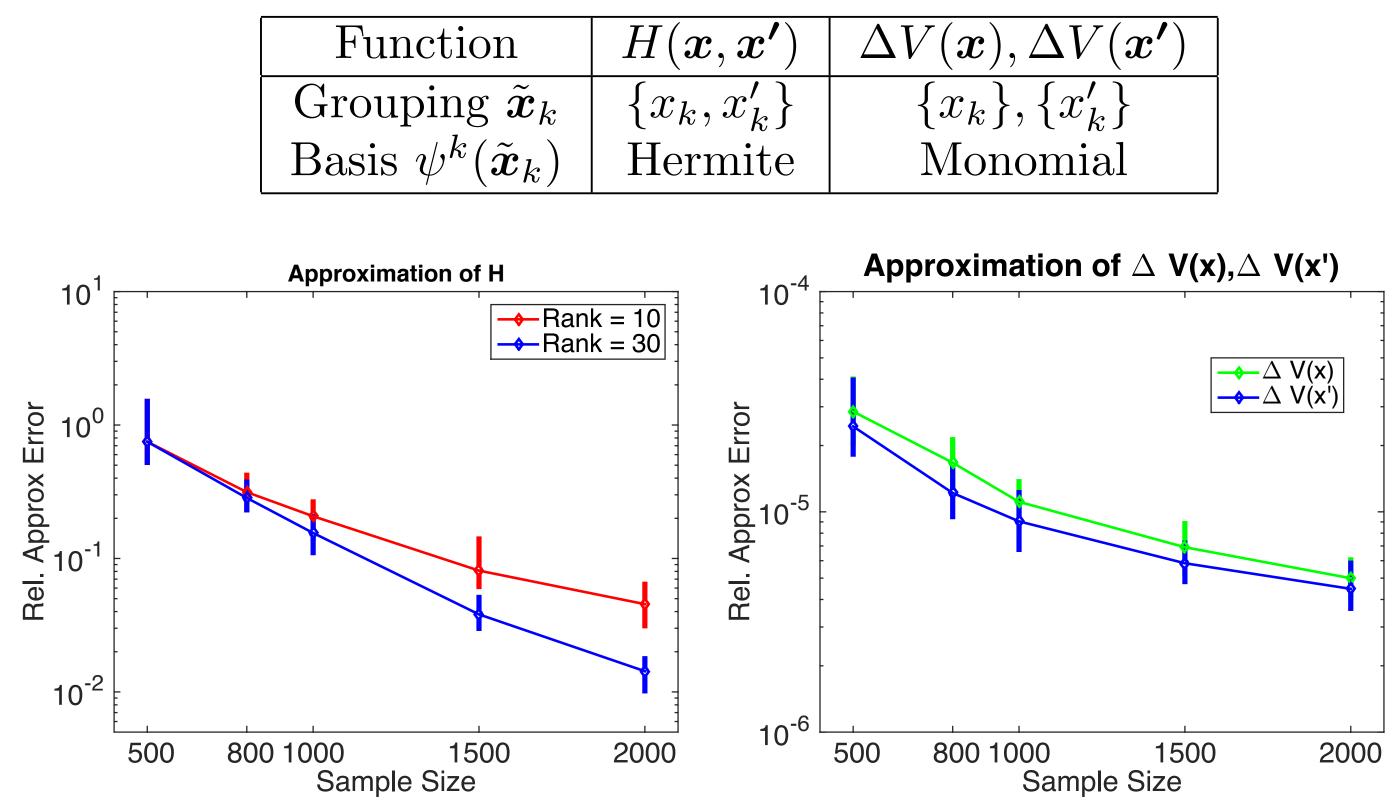
Matthew Hermes, So Hirata

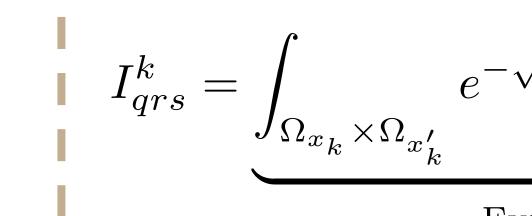
University of Illinois at Urbana-Champaign

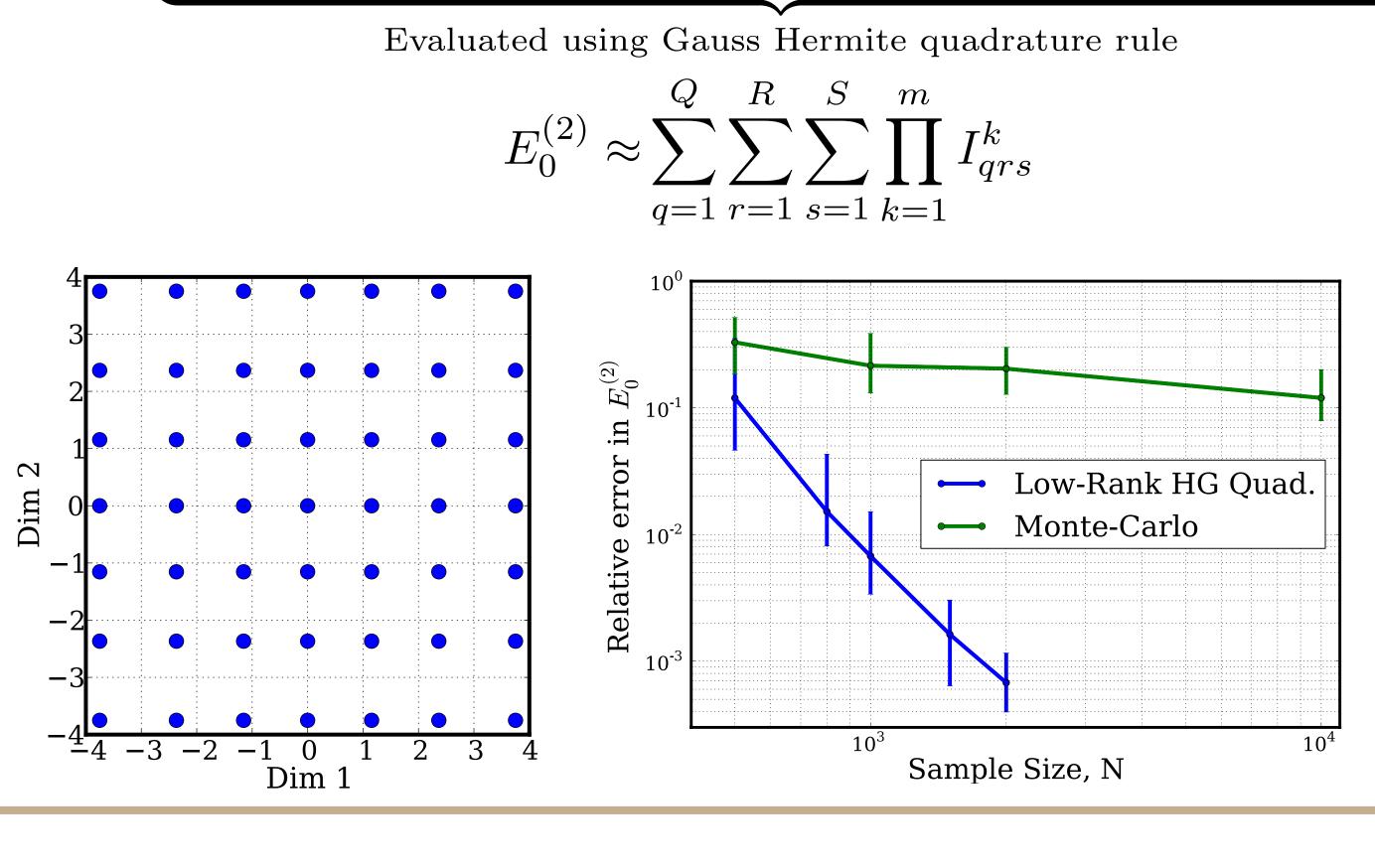
ow rank

- function
- ased on









- 137, 204122, 2012.
- 084105, 2014.

Illustrations

tion	$H(\boldsymbol{x}, \boldsymbol{x'})$	$\Delta V(\boldsymbol{x}), \Delta V(\boldsymbol{x'})$
ng $ ilde{oldsymbol{x}}_k$	$\left\{x_k, x'_k\right\}$	$\{x_k\}, \{x'_k\}$
$^{k}(ilde{oldsymbol{x}}_{k})$	Hermite	Monomial

$e^{-\sqrt{\omega_k}(x_k^2+x_k'^2)}\Delta V_q^k(x_k)H_r^k(x_k,x_k')\Delta V_s^k(x_k')dx_kdx_k'$

References

• M. Chevreuil, R. Lebrun, A. Nouy and P. Rai, "A least-squares method for sparse low rank approximation of multivariate functions", J Uncertainty Quantification, (Accepted)

• S. Yoo Willow, K. Kim and S. Hirata, "Stochastic evaluation of second-order many-body perturbation energies", J Chem Phys,

• M. Hermes and S. Hirata, "Stochastic many-body perturbation theory for anharmonic molecular vibrations", J Chem Phys, 141,

