
MUQ (MIT Uncertainty Quantification):
Flexible Software for Connecting Algorithms and Applications

Matthew Parno, Andrew Davis, Patrick Conrad, and Youssef Marzouk

Center for Computational Engineering
Massachusetts Institute of Technology

Motivation

MUQ (pronounced “muck”) is a collection of C++ and Python libraries for accelerating both the
application of existing uncertainty quantification (UQ) algorithms and the development of new
approaches. To facilitate these tasks, MUQ provides interfaces for defining and coupling models with
UQ-related algorithms. Throughout our code, we use well-founded software engineering techniques
and stable external libraries. Our goal is to provide an efficient and stable platform to help users
“MUQ” about—and much more—in UQ.

C
A

P
A

B
I

L
I

T
I

E
S

Modelling Module

Graph-based model construction

Random variables

Probability densities

Differentiation

θ

f

g1 g2

h
Model

output

Model

input

Inference Module

Markov chain Monte Carlo

Point estimates (MAP)

Transport maps

Importance sampling

DRAM

AMALA

NUTS (via STAN)

sMMALA

and more. . .

π(θ)

Prior

π(θ|d)

Posterior MAP Posterior Samples

Approximation Module

Polynomial chaos expansions

Regression

Incremental approximation

h(θ)

True model

h̃(θ)

Approximation

Optimization Module

Constrained nonlinear programs

Assignment problems

Links to external optimizers

Geostatistics Module

Covariance kernels

Karhunen-Loève (KL) decompositions

Utilities Module and Development Tools

Tools for HDF5 i/o

Vector type translation

Random number generation

Multi-indices

Linear solver and eigensolvers

Separating models from algorithms

It is challenging to provide a flexible interface between scientific models and a wide variety of
algorithms. This is because different algorithms exploit different aspects of model structure, and
models can provide varying levels of information (e.g., gradients, Hessians, block structure). In MUQ,
we have generally adopted a three-component system to define the model-algorithm interface.

Algorithm

Metropolis-Hastings

Nelder-Mead

etc. . .

Problem

Optimization objective

Bayesian posterior

etc. . .

Model

Physical PDE or ODE

Statistical

etc. . .

Benefits of this approach:

Models are independent of algorithms, which allows greater flexibility on both sides.

Problems can extract algorithm-specific structure from models and provide meaningful defaults.

Model/problem approximations can be employed without changing algorithms.

Inheritance and extendability

A good software library will allow a user to complete complicated tasks with a minimal amount of
code. In MUQ, we try to achieve this using abstract classes. Users implement a few member
functions that define core functionality, and code from the parent class provides additional
functionality. This type of object orientated programming makes it easy to extend MUQ with new
models and new algorithms.

Example implementation: MCMC

There are 3 key components to
most MCMC algorithms:

1. The chain.

2. The kernel.

3. The proposal.

MUQ defines each component
through an abstract base class.

Typical MCMC algorithms:

Chain Kernel Proposal

Other configurations are also

possible. Hybrid methods might

use more than one kernel and/or

several proposals

AMALA

AM

RW

smMALA

MH

DR

TM

IA

Single

Multi

C
O

D
E

E
X

A
M

P
L

E
S

Combining model components

Assume we want to create a Bayesian posterior density, π(θ|d) ∝ π(d |θ)π(θ), where
π(θ) = N(µ, Γ), d = f (θ) + ε, and ε ∼ N(0, 1). The graphical model for the posterior and
the corresponding code are given below.

Parameter
θ

Model
f (θ)

Prior
π(θ)

Likelihood
π(d |θ)

Posterior
π(θ|d)

Python Code:
Create the model components

para = V e c t o r P a s s t h r o u g h M o d e l ()

p r i o r = G a u s s i a n D e n s i t y (mu, gamma)

mod = ForwardModel ()

l i k e l y = G a u s s i a n D e n s i t y ()

Combine the components

graph = ModGraph ()

graph . AddNode (para , "Parameter")

graph . AddNode (p r i o r , "Prior")

graph . AddNode (l i k e l y , "Likelihood")

graph . AddNode (mod , "Model")

graph . AddNode (D e n s i t y P r o d u c t () , "Posterior")

graph . AddEdge ("Parameter" ,"Prior" , 0)

graph . AddEdge ("Parameter" ,"Model" , 0)

graph . AddEdge ("Model" ,"Likelihood" , 0)

graph . AddEdge ("Prior" ,"Posterior" , 0)

graph . AddEdge ("Likelihood" ,"Posterior" , 1)

Defining a new MCMC proposal

A fundamental quantity in Markov chain Monte Carlo (MCMC) algorithms is the proposal
density. In code, the proposal does two things: (1) generates a random sample of the
proposal, and (2) evaluates the proposal density. The code below shows an implementation
of a simple Gaussian random walk proposal.

C++ Code:
class MyPropoposal : public MCMCProposal {
public :

/** Construct the proposal using information in props */

MyProposal (s h a r e d p t r<Abst ractSa mpl ing Prob lem> prob , p t r e e& p r o p s) :

MCMCProposal (prob , p r o p s){
// extract the proposal variance from the parameters

propVar = p r o p s . g e t ("MCMC.MyProposal.Var" , 1 . 0) ;

// tell the problem what information this proposal needs

prob−>S e t S t a t e C o m p u t a t i o n s (false , false , false) ;

} ;

virtual ˜ MyProposal () = default ;

/** This function generates a sample of the proposal */

virtual s h a r e d p t r<MCMCState> DrawProposa l (s h a r e d p t r<MCMCState> c u r r e n t S t a t e ,

s h a r e d p t r<HDF5LogEntry> l o g E n t r y){
Eigen : : VectorXd p r o p S t a t e = c u r r e n t S t a t e−>s t a t e ;

p r o p S t a t e += s q r t (propVar)∗RandomGenerator : : GetNormalRandomVector (dim) ;

return prob−>C o n s t r u c t S t a t e (p r o p S t a t e , 0 , l o g E n t r y) ;

} ;

/** This function evaluates the log proposal density for a pair of points. */

virtual double P r o p o s a l D e n s i t y (s h a r e d p t r<MCMCState> c u r r e n t S t a t e ,

s h a r e d p t r<MCMCState> p r o p o s e d S t a t e){
auto d i f f = p r o p o s e d S t a t e−>s t a t e−c u r r e n t S t a t e−>s t a t e ;

return −0.5∗ d i f f . squaredNorm () / propVar ;

} ;

private : and/or

double propVar ;

} ;

Property tree parameters

Nearly all algorithms have tunable parameters. In MUQ, these are defined through either a boost property tree (in
C++) or a dictionary (in Python). In either case, parameter names are matched with parameter values. These pairs
can also be easily store in structured xml files.

C++ code:
b o o s t : : p r o p e r t y t r e e : : p t r e e params ;

params . put ("MCMC.Kernel" ,"DR") ;

params . put ("MCMC.Verbosity" , 3) ;

params . put ("Dummy" , 1 0 0 . 0) ;

Python code:
params = d i c t ()

params [’MCMC.Kernel’] = DR

params [’MCMC.Verbosity’]=3

params [’Dummy’]=100.0

XML file:
<MCMC>

<K e r n e l>DR</ K e r n e l>

<V e r b o s i t y>3</ V e r b o s i t y>

</MCMC>

<Dummy>1 0 0 . 0</Dummy>

U
S

E
I

N
R

E
S

E
A

R
C

H

Map-accelerated MCMC

Idea:

Use nonlinear variable
transformations to “precondition”
target density.

Apply any MCMC kernel to
transformed problem.

The exchangeability of MCMC kernels
and proposals makes testing many
methods easy.

reference proposal
qr(r ′|r) = N(r , σ2I)

mapped proposal
qθ(θ

′|θ) = qr

(
T̃ (θ′)|T̃ (θ)

) ∣∣∣detDT̃ (θ′)
∣∣∣

Pseudo marginal MCMC with local approximations

Idea:

Focus MCMC on parameters of interest

Marginalize unneeded parameters with
importance sampling

Approximating noisy likelihood dramatically
reduces model evaluations.

Performing marginalization in a problem class
allows the algorithm and model to be
independent of pseudo-marginal application.

Adaptive non-intrusive polynomial chaos

Idea:

Approximate forward model with polynomial
expansion.

Adaptively choose expansion terms and quadrature
points to minimize number of necessary model
evaluations.

The polynomial approximation has the same interface
as the original model, making it easy to swap with the
original model in any graph.

0 5 10 15
0

5

10

15

Order of x polynomial

O
rd

er
 o

f y
 p

ol
yn

om
ia

l

log10 |fi|
−15

−10

−5

0

0 5 10 15
0

5

10

15

Order of x polynomial

O
rd

er
 o

f y
 p

ol
yn

om
ia

l

log10 |fi|
−15

−10

−5

0

Robust optimization of pumping rates

Idea:

Use posterior samples to evaluate expected head.

Control pumping rates to restrict contaminant
movement.

Optimization performed with sample average
approximation (SAA) or stochastic approximation (SA).

The same model implementation can be used for both
optimization and inference (just in different graphs),
reducing repeated code.

Robust
solution

Deterministic
solution

Where can I get MUQ?

Want more? Download MUQ and find links to our documentation at

bitbucket.org/mituq/muq

uqgroup.mit.edu Supported by the US Department of Energy, Office of Advanced Scientific Computing Research (ASCR), part of the SciDAC Institute for the Quantification of Uncertainty in Extreme Scale CompuTations (QUEST). Email contacts: ymarz@mit.edu, mparno@mit.edu

