
6938568

2809800

many-to-many collective
{'scale' : 1024}

2551752

broadcast
{'scale' : 4096,

'root' : 0}

reduce
{'scale' : 16,
'root' : 3}

3D nearest neighbor
{'dims': (8, 2, 4),

'scale' : 1024,
'periodic' : [False, False, False]}

2D nearest neighbor
{'dims': (8, 8),
'scale' : 8192,

'periodic' : [True, True]}

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 0, 0)}

2519496

broadcast
{'scale' : 512,

'root' : 6}

reduce
{'scale' : 16,
'root' : 3}

3D nearest neighbor
{'dims': (8, 2, 4),

'scale' : 1024,
'periodic' : [False, False, False]}

2D nearest neighbor
{'dims': (8, 8),
'scale' : 8192,

'periodic' : [True, True]}

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 0, 0)}

2518488

reduce
{'scale' : 16,
'root' : 3}

3D nearest neighbor
{'dims': (8, 2, 4),

'scale' : 1024,
'periodic' : [False, False, False]}

2D nearest neighbor
{'dims': (8, 8),
'scale' : 8192,

'periodic' : [True, True]}

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 0, 0)}

2239960

3D nearest neighbor
{'dims': (8, 2, 4),

'scale' : 1024,
'periodic' : [False, False, False]}

421336

2D nearest neighbor
{'dims': (8, 8),
'scale' : 8192,

'periodic' : [True, True]}

2379224

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 0, 0)}

404952

2D nearest neighbor
{'dims': (8, 8),
'scale' : 7168,

'periodic' : [True, True]}

200152

2D nearest neighbor
{'dims': (16, 4),

'scale' : 1024,
'periodic' : [False, False]}

544216

2D nearest neighbor
{'dims': (8, 8),
'scale' : 7168,

'periodic' : [True, True]}

2239960

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 1, 0)}

404952

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (1, 1, 0)}

667096

2D nearest neighbor
{'dims': (8, 8),
'scale' : 6144,

'periodic' : [True, True]}

Background 
v The Roofline model provides a visually-intuitive approach to analyzing application performance.  

§  Decomposes application into key numerical kernels 
§  Principally oriented around throughput metrics (flop/s vs. GB/s) 
§  Uses machine and application balance to determine performance bound 
§  Expandable by including ILP, DLP, TLP, cache, and memory access pattern effects 

v To date, application of the Roofline has been challenged on four fronts… 
§  It requires a model of processor microarchitecture.  Many researchers often lack the computer architecture background to create such a model. 
§  It requires accurate monitoring of kernel execution including DRAM data movement, SIMDization, ILP stalls, use of TLP, etc…  This information is difficult to 

extract from some tools and impossible to gather from some processors. 
§  It requires estimates of the data movement and computational requirements of each numerical kernel.  e.g. what is the minimum data movement and 

computation each kernel requires?  Within each kernel, is there any inherent DLP or ILP?  Since existing tools are unable to extract these parameters, the 
model requires application scientists be knowledgeable of both computer architecture and application software (a rare combination). 

§  Visualization of the model was left to the user.  In practice, this varied from whiteboard doodles, to elaborate GNU and MATLAB plots.  

v To that end, SUPER and FastMath have collaborated on developing a Roofline Toolkit to facilitate use of the model. 
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•  The	
  Problem	
  
– We	
  want	
  a	
  concise	
  way	
  to	
  express	
  applica1on	
  communica1on	
  demands	
  
–  E.g.,	
  “3D	
  Nearest	
  Neighbor,	
  broadcast,	
  and	
  reduce”	
  instead	
  of	
  communica1on	
  
matrices	
  

–  But…strong	
  exper1se	
  needed	
  to	
  iden1fy	
  paCerns	
  from	
  communica1on	
  matrices	
  
•  Our	
  Approach	
  

–  Automated	
  search	
  using	
  a	
  library	
  of	
  paCerns	
  to	
  iden1fy	
  collec1on	
  of	
  parameterized	
  
paCerns	
  that	
  best	
  explains	
  observed	
  communica1on	
  

–  Adopts	
  idea	
  from	
  astronomy’s	
  sky	
  subtrac1on:	
  given	
  an	
  image,	
  remove	
  the	
  known	
  to	
  
make	
  it	
  easier	
  to	
  iden1fy	
  the	
  unknown	
  

–  Input	
  is	
  communica1on	
  matrix,	
  e.g.,	
  as	
  collected	
  by	
  the	
  Oxbow	
  version	
  of	
  mpiP	
  (hCp://oxbow.ornl.gov)	
  
–  Each	
  search	
  step	
  involves	
  recognizing	
  a	
  paCern,	
  scaling	
  the	
  recognized	
  paCern	
  as	
  large	
  as	
  possible,	
  and	
  removing	
  
the	
  scaled	
  paCern	
  to	
  produce	
  a	
  communica1on	
  matrix	
  containing	
  as-­‐yet-­‐unrecognized	
  communica1on	
  behavior	
  

-­‐ =

Recognizing	
  and	
  removing	
  the	
  contribu3on	
  of	
  a	
  2D	
  nearest	
  neighbor	
  pa9ern	
  in	
  a	
  synthe3c	
  
communica3on	
  matrix.	
  	
  This	
  represents	
  one	
  step	
  in	
  a	
  search-­‐based	
  approach.	
  

•  Search	
  Results	
  Tree	
  
–  Communica1on	
  matrices	
  at	
  nodes	
  

•  Ini1al	
  communica1on	
  matrix	
  associated	
  with	
  tree	
  root	
  
–  Recognized,	
  parameterized	
  paCerns	
  label	
  edges	
  
–  Child	
  node’s	
  matrix	
  is	
  result	
  of	
  subtrac1ng	
  recognized	
  
paCern	
  from	
  parent’s	
  matrix	
  

– When	
  child	
  node	
  is	
  added	
  to	
  tree,	
  recursively	
  apply	
  
search	
  star1ng	
  at	
  the	
  child	
  

Search	
  results	
  tree	
  for	
  
synthe3c	
  communica3on	
  
matrix.	
  	
  Nodes	
  are	
  labeled	
  
with	
  residual	
  of	
  
associated	
  
communica3on	
  matrix.	
  	
  
Triangles	
  indicate	
  por3ons	
  
of	
  the	
  tree	
  that	
  are	
  elided	
  
for	
  space.	
  

•  Output	
  
-  Residual	
  of	
  matrix	
  is	
  total	
  amount	
  of	
  communica1on	
  volume	
  represented	
  in	
  matrix	
  
-  When	
  search	
  completes,	
  path	
  from	
  root	
  to	
  leaf	
  with	
  smallest	
  residual	
  indicates	
  collec1on	
  of	
  paCerns	
  that	
  best	
  

explain	
  original	
  matrix	
  (red	
  path	
  in	
  example	
  search	
  results	
  tree)	
  
-  Output	
  from	
  the	
  automated	
  search	
  is	
  a	
  list	
  of	
  parameterized	
  paCerns	
  that	
  best	
  explain	
  input	
  communica1on	
  

matrix	
  
-  Output	
  is	
  trivially	
  converted	
  into	
  expression	
  with	
  parameterized	
  paCerns	
  as	
  terms,	
  e.g.:	
  

4. CASE STUDIES

4.1 Test System
We used the Keeneland Initial Delivery System [29] (KIDS)

for our case studies. KIDS is a Georgia Institute of Tech-
nology cluster deployed at Oak Ridge National Laboratory.
The system contained 120 HP ProLiant SL390 G7 compute
nodes. Each compute node contained 24 GB memory, two
Intel Xeon X5660 processors running at 2.80 GHz, and three
NVIDIA M2090 GPUs. The nodes were connected with an
Infiniband QDR interconnection network. The system used
the CentOS 6.3 Linux distribution on its compute nodes.
We used the Intel Composer XE 2013 SP1.1.106 (also re-
ported as version 14.0.1) compilers to build and run the test
applications, and OpenMPI 1.6.1 as the MPI library and
runtime.

4.2 LAMMPS
LAMMPS is a molecular dynamics simulator, written in

C++, that uses MPI for interprocess communication and
synchronization. We obtained the LAMMPS source code
from the project’s Git repository, and used revision 42bb280c
dated 2014-04-15. We modified the LAMMPS makefile to
build on KIDS, and to link in our version of the mpiP li-
brary that produces communication topology matrix files.
We ran LAMMPS with the EAM benchmark problem input
file using 96 processes in a 4 ⇥ 4 ⇥ 6 3D Cartesian process
topology.

When solving the EAM benchmark problem, LAMMPS
uses MPI point-to-point operations in a 3D nearest neighbor
communication pattern, and the MPI broadcast, allreduce,
and scan collective operations. The broadcast operations are
all rooted at MPI rank 0. The version of mpiP we used for
this study models the rootless MPI allreduce operation as
a reduce operation to rank 0, followed by a broadcast from
0 to all other operations. It also models the scan operation
as a gather operation of data from all processes to rank 0,
which then computes the scan result and scatters the result
to all processes. This may not be how the underlying MPI
implements these collective operations, but because mpiP
operates at the MPI profiling interface, it has no information
about the underlying implementation.

Figure 5 shows visualizations of the communication ma-
trix produced by mpiP for the 96-process LAMMPS run,
the patterns recognized by AChax in this matrix, and the
matrices produced by removing those patterns. To expose
detail that would be hidden if the blue saturation color map
of Figure 3 were used, this figure uses a heat map color
palette with “hotter” colors (e.g., yellow, orange) indicating
larger values and “cooler” colors (e.g., blue, purple) indi-
cating smaller values. Zero values in the communication
matrix are indicated using white blocks. As shown in the
figure, AChax recognized the 3D nearest neighbor commu-
nication pattern, including the correct dimensions of the 3D
Cartesion topology used. Because of the way mpiP models
MPI Scan and MPI Allreduce, AChax cannot distinguish
between these operations and MPI Bcast and MPI Reduce,
and has recognized the communication as the latter pair of
patterns. Lacking more information about how the MPI
library implements its rootless communication operations,
and having mpiP expose that information, the resulting pat-
terns reported by AChax are equivalent as far as their use-
fulness. We can express the LAMMPS communication be-

havior using the following expression, using the scale of each
recognized pattern as a coe�cient:

CLAMMPS = 13354 ·Broadcast(root : 0)+

700 ·Reduce(root : 0)+

19318888 · 3DNearestNeighbor(

dims : (4, 4, 6),

periodic : True)

The error in this expression, visualized as a communication
matrix, is shown in Figure 5d.
At first glance, the residual matrix produced by remov-

ing all recognized patterns (Figure 5d) makes it appear as if
AChax did not correctly determine the scale of the 3D near-
est neighbor pattern, because the residual pattern appears
to match the pure 3D nearest neighbor pattern. In fact,
AChax did recognize the scale correctly: after removing the
recognized pattern, there is a zero element (circled in the fig-
ure) in one of the diagonals that must be non-zero for a 3D
nearest neighbor pattern. The residual matrix produced by
AChax after removing recognized patterns provides the in-
teresting insight that not only does LAMMPS use a 3D near-
est neighbor communication pattern, the amount of data
LAMMPS communicates between neighbors varies. The col-
oration of Figure 5d indicates that for the input problem we
used, the LAMMPS nearest neighbor communication trans-
ferred more data in some dimensions than others. More
data was sent by process with rank i to its neighbors with
rank i± 1 (yellow blocks in the figure) than to its neighbors
along the next dimension (blue blocks in the figure), and
that more than to its neighbors along the final dimension
(purple blocks in the figure). Furthermore, the amount of
data sent by each proces to its neighbor along that third
dimension varies, as indicated by the fact that removing the
recognized pattern with its constant scale caused only one of
the would-be-purple blocks to have a zero value. If all pro-
cesses communicated the same amount along this dimension,
the resulting matrix would have no non-zeros in these diag-
onals, and the purple-colored blocks in Figure 5d would not
be there.

4.3 LULESH
The Livermore Unstructured Lagrangian Explicit Shock

Hydrodynamics application [13] (LULESH) is a proxy ap-
plication meant to approximate a typical hydrodynamics
model such as ALE3D [22]. LULESH is one of the appli-
cations being used for hardware/software co-design within
the U.S. Department of Energy’s Exascale Co-Design Cen-
ter for Materials in Extreme Environments [7]. Unlike a full
application, LULESH solves a specific, hard-coded problem.
We used LULESH version 2.0.3 [14]. This version is written
in C++ and can be built for serial execution or parallel ex-
ecution using MPI or MPI+OpenMP. We ran LULESH on
KIDS with 216 processes in a 6⇥ 6⇥ 6 3D process topology.
LULESH uses a limited number of MPI communication

operations: non-blocking point-to-point sends and receives,
and the reduce and allreduce collective operations. Never-
theless, LULESH exhibits interesting communication pat-
terns for AChax to characterize.
Figure 6 shows visualizations of the communication ma-

trix produced by mpiP for the 216-process LULESH run,
the patterns recognized by AChax in this matrix, and the
intermediate matrices produced by removing the recognized

•  Pilot	
  implementa7on:	
  Python-­‐based	
  using	
  NumPy	
  and	
  SciPy	
  matrix	
  support	
  
–  PaCern	
  recognizers/generators	
  are	
  Python	
  classes	
  

•  Many-­‐to-­‐many,	
  Broadcast,	
  Reduce,	
  2D	
  Nearest	
  Neighbor,	
  3D	
  Nearest	
  Neighbor,	
  3D	
  Wavefront	
  (sweep)	
  from	
  a	
  corner,	
  Random	
  (generate	
  
only)	
  

•  Example:	
  LAMMPS	
  
–  Communica1on	
  matrix	
  collected	
  using	
  Oxbow’s	
  mpiP	
  for	
  96-­‐process	
  LAMMPS	
  run	
  of	
  EAM	
  benchmark	
  on	
  Keeneland	
  
Ini1al	
  Delivery	
  System	
  

–  Basically	
  a	
  3D	
  Nearest	
  Neighbor	
  paCern,	
  but	
  detected	
  as	
  imperfect	
  (red	
  circle	
  in	
  last	
  figure)	
  

Original	
  matrix	
   AEer	
  removing	
  broadcast	
   AEer	
  removing	
  reduce	
  

AEer	
  removing	
  3D	
  
nearest	
  neighbor,	
  
dimensions	
  (4,4,6),	
  
periodic	
  	
  

Automated	
  Characteriza1on	
  of	
  Message	
  Passing	
  Applica1on	
  
Communica1on	
  PaCerns	
   Empirical	
  Roofline	
  Toolkit	
  

Beyond the Textbook Roofline Model 
v Nominally, Roofline is a throughput-oriented (streaming) performance model on a single level of memory or cache. 

v In reality, architectures have multiple levels of memory and applications have hierarchical working sets. 

v Thus, reuse, bandwidth, and working set sizes are important metrics in understanding performance.  

v Expanded Roofline to capture performance on a two-level memory as a function of reuse and working set size… 
§  GPU performance is highly dependent on use of shared vs. cache (application writer must choose implementation on kernel by kernel basis). 
§  CPUs are much faster than GPUs in some regions… 

Initial ERT Release 
v Initial ERT release focused on characterizing and 

visualizing the Flop/DRAM Roofline on CPU architectures. 
§  Peak flops (using polynomial amenable to FMA instructions) 
§  Bandwidths and capacities for each level of memory and cache 

v Runs on… 
§  Xeon (Edison), Xeon Phi (Babbage), Opteron (Hopper), BlueGene/Q 

(Mira), Power7 and Power8 

v Proxy real-world applications… 
§  MPI+OpenMP implementation highlights any unintended NUMA issues. 
§  Compiled C code (can the compiler SIMDize?) 
§  Streaming (throughput-oriented) behavior with ample ILP, DLP, TLP 

v Roofline Visualization… 
§  Simple, portable Roofline chart viewer tool 
§  Eclipse integration 
§  Access to Roofline chart data stored in shared database 

 for(i=…){ 
  sum01=_mm_add_pd(sum01,…b[i  ]…); 

  sum23=_mm_add_pd(sum23,…b[i+2]…); 
  sum45=_mm_add_pd(sum45,…b[i+4]…); 

  sum67=_mm_add_pd(sum67,…b[i+6]…); 
 } 
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 for(i=…){ 
  sum0=_mm_add_sd(sum0,…b[i  ]…); 

  sum1=_mm_add_sd(sum1,…b[i+1]…); 
  sum2=_mm_add_sd(sum2,…b[i+2]…); 

  sum3=_mm_add_sd(sum3,…b[i+3]…); 
 } 

 for(i=…){ 
  sum0+=b[i  ]; 

  sum1+=b[i+1]; 
  sum2+=b[i+2]; 

  sum3+=b[i+3]; 
 } 
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v CUDA 6.5 now supports Unified Memory (treat 
device memory as OS-controlled page cache on 
CPU memory) 

v GPU Programmers must choose whether to… 
§  use Unified memory and let the OS control everything 
§  micromanage data allocation/movement/locality themselves 
§  use zero copy memory and keep everything on the host. 

v How does performance vary on Kepler GPUs 
(e.g. ORNL’s Titan and NERSC’s Dirac)? 
§  Zero copy memory performs very poorly (PCIe bandwidth 

on every access) and has no benefit from temporal locality. 
§  Page locked with explicit management works well for 

large working sets (>4MB) with high temporal locality 
(reuse 50x). 

§  Unified memory behaves like explicit management getting a 
benefit from temporal locality, but is 3x slower. 

§  It seems explicit management of data movement and 
locality is still required on Titan. 

1

10

50

100

1 KB 16 KB 256 KB 4 MB 64 MB 1 GB

G
PU

 M
em

or
y 

Re
us

es
 T

im
es

Working Set Size

Memory Ping-Pong Study, Dirac
Page-locked Host (Zero Copy)

 1

 2

 4

 8

 16

 32

 64

 128

Ef
fe

ct
ive

 B
an

dw
id

th
 (G

B/
s)

0.15 2.07 6.76 8.27 8.46 8.55

0.23 2.50 4.45 5.00 5.03 5.04

0.26 3.08 5.45 6.19 6.26 6.41

0.27 3.07 5.43 6.17 6.23 6.37

0.15 2.07 6.76 8.27 8.46 8.55

0.23 2.50 4.45 5.00 5.03 5.04

0.26 3.08 5.45 6.19 6.26 6.41

0.27 3.07 5.43 6.17 6.23 6.37

1

10

50

100

1 KB 16 KB 256 KB 4 MB 64 MB 1 GB

G
PU

 M
em

or
y 

Re
us

es
 T

im
es

Working Set Size

Memory Ping-Pong Study, Dirac
Page-locked Host (Explicit Copy)

 1

 2

 4

 8

 16

 32

 64

 128

Ef
fe

ct
ive

 B
an

dw
id

th
 (G

B/
s)

0.10 1.19 5.76 7.51 7.64 7.70

0.21 2.74 11.46 13.78 13.71 13.70

0.29 4.72 50.66 111.7 112.6 113.0

0.30 4.95 60.18 157.1 157.7 156.4

0.10 1.19 5.76 7.51 7.64 7.70

0.21 2.74 11.46 13.78 13.71 13.70

0.29 4.72 50.66 111.7 112.6 113.0

0.30 4.95 60.18 157.1 157.7 156.4

1

10

50

100

1 KB 16 KB 256 KB 4 MB 64 MB 1 GB

G
PU

 M
em

or
y 

Re
us

es
 T

im
es

Working Set Size

Memory Ping-Pong Study, Dirac
Unified Memory Management (Zero Copy)

 1

 2

 4

 8

 16

 32

 64

 128

Ef
fe

ct
ive

 B
an

dw
id

th
 (G

B/
s)

0.08 0.82 1.70 1.71 1.63 1.60

0.20 2.44 5.95 6.41 6.24 6.05

0.29 4.35 26.00 36.59 36.13 32.19

0.30 4.80 38.33 64.28 63.24 52.72

Samuel Williams, Brian Van Straalen, Terry Ligocki, 
Leonid Oliker, Matt Cordery, Nick Wright 

Lawrence Berkeley National Lab 
Yu Jung (Linda) Lo 
University of Utah 

Wyatt Spear, Boyana Norris, Allen Malony, 
Sameer Shende, Kevin Huck, Nick Chaimov 

University of Oregon 

Performance	
  API	
  –	
  PAPI	
  
PAPI	
  (Performance	
  Applica1on	
  Programming	
  Interface)	
  provides	
  the	
  tool	
  designer	
  
and	
  applica1on	
  engineer	
  with	
  a	
  consistent	
  interface	
  and	
  methodology	
  for	
  use	
  of	
  
the	
  performance	
  counter	
  hardware	
  found	
  in	
  most	
  major	
  microprocessors.	
  In	
  
addi1on,	
  it	
  provides	
  access	
  to	
  a	
  collec1on	
  of	
  components	
  that	
  expose	
  
performance	
  measurement	
  opportuni1es	
  across	
  the	
  hardware	
  and	
  so`ware.	
  
stack.	
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Autoperf	
  
v Simple	
  tool	
  for	
  performance	
  experiments	
  and	
  

associated	
  analysis	
  
v Adds	
  a	
  layer	
  of	
  abstrac1on	
  over	
  exis3ng	
  

performance	
  tools	
  
v Automates	
  tedious	
  and	
  error-­‐prone	
  tasks	
  	
  

•  Selec1ng	
  performance	
  counters	
  (minimize	
  #	
  
of	
  experiments	
  required)	
  

•  Using	
  available	
  measurement	
  tools:	
  PAPI,	
  
TAU,	
  HPCToolkit,	
  Open|SpeedShop,...	
  

•  Sefng	
  up	
  the	
  environment	
  for	
  each	
  tool,	
  
managing	
  sequen1al	
  and	
  batch	
  parallel	
  jobs	
  
on	
  different	
  architectures	
  

•  Genera1ng	
  selec1ve	
  profiling	
  configura1on	
  
based	
  on	
  sampling	
  results	
  

•  Configuring	
  access	
  to	
  databases	
  (e.g.	
  
TAUdb),	
  uploading	
  data	
  

•  Reusable	
  and	
  extensible	
  analyses	
  that	
  are	
  
easy	
  to	
  understand;	
  comparisons	
  across	
  
mul1ple	
  code	
  versions	
  

•  hCps://github.com/HPCL/autoperf.git	
  	
  
	
  v Example:	
  Studying	
  the	
  effects	
  of	
  op1miza1ons	
  on	
  a	
  

Geant4	
  applica1on	
  (SimplifiedCalorimeter)	
  compiled	
  
gcc	
  4.8	
  (any	
  two	
  versions	
  can	
  be	
  compared	
  this	
  way).	
  

Stalls	
  per	
  instruc7on	
  vs	
  total	
  
cycles:	
  -­‐O2	
  unexpectedly	
  
increases	
  stalls	
  per	
  instruc1on	
  
in	
  two	
  of	
  the	
  func1ons;	
  each	
  
circle’s	
  diameter	
  is	
  propor1onal	
  
to	
  the	
  corresponding	
  func1on’s	
  
frac1on	
  of	
  total	
  execu1on	
  1me.	
  
The	
  top	
  5	
  func1ons	
  are	
  labeled.	
  
Other	
  measurements	
  presented	
  
in	
  a	
  similar	
  manner	
  help	
  
determine	
  the	
  cause	
  of	
  the	
  
stalls.	
  

-­‐O2	
  (green)	
  	
  vs.	
  -­‐O0	
  (yellow)	
  

-­‐O3	
  (green)	
  	
  vs.	
  	
  
-­‐O0	
  (yellow)	
  

PAPI-­‐NUMA	
  
•  Experimental	
  	
  (not	
  yet	
  released)	
  
•  Sampling	
  support	
  for	
  cache	
  and	
  

memory	
  events,	
  including	
  data	
  
source,	
  latency,	
  etc.	
  

•  Intended	
  to	
  provide	
  a	
  standard	
  
interface	
  to	
  data	
  needed	
  for	
  
NUMA	
  performance	
  analysis	
  	
  	
  
and	
  op1miza1on	
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