
6938568

2809800

many-to-many collective
{'scale' : 1024}

2551752

broadcast
{'scale' : 4096,

'root' : 0}

reduce
{'scale' : 16,
'root' : 3}

3D nearest neighbor
{'dims': (8, 2, 4),

'scale' : 1024,
'periodic' : [False, False, False]}

2D nearest neighbor
{'dims': (8, 8),
'scale' : 8192,

'periodic' : [True, True]}

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 0, 0)}

2519496

broadcast
{'scale' : 512,

'root' : 6}

reduce
{'scale' : 16,
'root' : 3}

3D nearest neighbor
{'dims': (8, 2, 4),

'scale' : 1024,
'periodic' : [False, False, False]}

2D nearest neighbor
{'dims': (8, 8),
'scale' : 8192,

'periodic' : [True, True]}

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 0, 0)}

2518488

reduce
{'scale' : 16,
'root' : 3}

3D nearest neighbor
{'dims': (8, 2, 4),

'scale' : 1024,
'periodic' : [False, False, False]}

2D nearest neighbor
{'dims': (8, 8),
'scale' : 8192,

'periodic' : [True, True]}

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 0, 0)}

2239960

3D nearest neighbor
{'dims': (8, 2, 4),

'scale' : 1024,
'periodic' : [False, False, False]}

421336

2D nearest neighbor
{'dims': (8, 8),
'scale' : 8192,

'periodic' : [True, True]}

2379224

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 0, 0)}

404952

2D nearest neighbor
{'dims': (8, 8),
'scale' : 7168,

'periodic' : [True, True]}

200152

2D nearest neighbor
{'dims': (16, 4),

'scale' : 1024,
'periodic' : [False, False]}

544216

2D nearest neighbor
{'dims': (8, 8),
'scale' : 7168,

'periodic' : [True, True]}

2239960

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 1, 0)}

404952

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (1, 1, 0)}

667096

2D nearest neighbor
{'dims': (8, 8),
'scale' : 6144,

'periodic' : [True, True]}

Background
v The Roofline model provides a visually-intuitive approach to analyzing application performance.

§  Decomposes application into key numerical kernels
§  Principally oriented around throughput metrics (flop/s vs. GB/s)
§  Uses machine and application balance to determine performance bound
§  Expandable by including ILP, DLP, TLP, cache, and memory access pattern effects

v To date, application of the Roofline has been challenged on four fronts…
§  It requires a model of processor microarchitecture. Many researchers often lack the computer architecture background to create such a model.
§  It requires accurate monitoring of kernel execution including DRAM data movement, SIMDization, ILP stalls, use of TLP, etc… This information is difficult to

extract from some tools and impossible to gather from some processors.
§  It requires estimates of the data movement and computational requirements of each numerical kernel. e.g. what is the minimum data movement and

computation each kernel requires? Within each kernel, is there any inherent DLP or ILP? Since existing tools are unable to extract these parameters, the
model requires application scientists be knowledgeable of both computer architecture and application software (a rare combination).

§  Visualization of the model was left to the user. In practice, this varied from whiteboard doodles, to elaborate GNU and MATLAB plots.

v To that end, SUPER and FastMath have collaborated on developing a Roofline Toolkit to facilitate use of the model.

Technology Translation: Modeling, Measurement and Analysis
Philip C. Roth, Jeremy S. Meredith,

Jeffrey S. Vetter
Oak Ridge National Laboratory

(Partial) support for this work was provided through the Scientific Discovery
through Advanced Computing (SciDAC) program funded by U.S. Department of
Energy, Office of Science, Advanced Scientific Computing Research (and Basic
Energy Sciences/Biological and Environmental Research/High Energy Physics/
Fusion Energy Sciences/Nuclear Physics). LLNL-POST-657319.

(Partial) support for this work was provided through the Scientific Discovery through
Advanced Computing (SciDAC) program funded by U.S. Department of Energy, Office
of Science, Advanced Scientific Computing Research (and Basic Energy Sciences/
Biological and Environmental Research/High Energy Physics/Fusion Energy Sciences/
Nuclear Physics) under award numbers DE-SC0006844, DESC0006947.

•  The	
 Problem	

– We	
 want	
 a	
 concise	
 way	
 to	
 express	
 applica1on	
 communica1on	
 demands	

–  E.g.,	
 “3D	
 Nearest	
 Neighbor,	
 broadcast,	
 and	
 reduce”	
 instead	
 of	
 communica1on	

matrices	

–  But…strong	
 exper1se	
 needed	
 to	
 iden1fy	
 paCerns	
 from	
 communica1on	
 matrices	

•  Our	
 Approach	

–  Automated	
 search	
 using	
 a	
 library	
 of	
 paCerns	
 to	
 iden1fy	
 collec1on	
 of	
 parameterized	

paCerns	
 that	
 best	
 explains	
 observed	
 communica1on	

–  Adopts	
 idea	
 from	
 astronomy’s	
 sky	
 subtrac1on:	
 given	
 an	
 image,	
 remove	
 the	
 known	
 to	

make	
 it	
 easier	
 to	
 iden1fy	
 the	
 unknown	

–  Input	
 is	
 communica1on	
 matrix,	
 e.g.,	
 as	
 collected	
 by	
 the	
 Oxbow	
 version	
 of	
 mpiP	
 (hCp://oxbow.ornl.gov)	

–  Each	
 search	
 step	
 involves	
 recognizing	
 a	
 paCern,	
 scaling	
 the	
 recognized	
 paCern	
 as	
 large	
 as	
 possible,	
 and	
 removing	

the	
 scaled	
 paCern	
 to	
 produce	
 a	
 communica1on	
 matrix	
 containing	
 as-­‐yet-­‐unrecognized	
 communica1on	
 behavior	

-­‐ =

Recognizing	
 and	
 removing	
 the	
 contribu3on	
 of	
 a	
 2D	
 nearest	
 neighbor	
 pa9ern	
 in	
 a	
 synthe3c	

communica3on	
 matrix.	
 	
 This	
 represents	
 one	
 step	
 in	
 a	
 search-­‐based	
 approach.	

•  Search	
 Results	
 Tree	

–  Communica1on	
 matrices	
 at	
 nodes	

•  Ini1al	
 communica1on	
 matrix	
 associated	
 with	
 tree	
 root	

–  Recognized,	
 parameterized	
 paCerns	
 label	
 edges	

–  Child	
 node’s	
 matrix	
 is	
 result	
 of	
 subtrac1ng	
 recognized	

paCern	
 from	
 parent’s	
 matrix	

– When	
 child	
 node	
 is	
 added	
 to	
 tree,	
 recursively	
 apply	

search	
 star1ng	
 at	
 the	
 child	

Search	
 results	
 tree	
 for	

synthe3c	
 communica3on	

matrix.	
 	
 Nodes	
 are	
 labeled	

with	
 residual	
 of	

associated	

communica3on	
 matrix.	
 	

Triangles	
 indicate	
 por3ons	

of	
 the	
 tree	
 that	
 are	
 elided	

for	
 space.	

•  Output	

-  Residual	
 of	
 matrix	
 is	
 total	
 amount	
 of	
 communica1on	
 volume	
 represented	
 in	
 matrix	

-  When	
 search	
 completes,	
 path	
 from	
 root	
 to	
 leaf	
 with	
 smallest	
 residual	
 indicates	
 collec1on	
 of	
 paCerns	
 that	
 best	

explain	
 original	
 matrix	
 (red	
 path	
 in	
 example	
 search	
 results	
 tree)	

-  Output	
 from	
 the	
 automated	
 search	
 is	
 a	
 list	
 of	
 parameterized	
 paCerns	
 that	
 best	
 explain	
 input	
 communica1on	

matrix	

-  Output	
 is	
 trivially	
 converted	
 into	
 expression	
 with	
 parameterized	
 paCerns	
 as	
 terms,	
 e.g.:	

4. CASE STUDIES

4.1 Test System
We used the Keeneland Initial Delivery System [29] (KIDS)

for our case studies. KIDS is a Georgia Institute of Tech-
nology cluster deployed at Oak Ridge National Laboratory.
The system contained 120 HP ProLiant SL390 G7 compute
nodes. Each compute node contained 24 GB memory, two
Intel Xeon X5660 processors running at 2.80 GHz, and three
NVIDIA M2090 GPUs. The nodes were connected with an
Infiniband QDR interconnection network. The system used
the CentOS 6.3 Linux distribution on its compute nodes.
We used the Intel Composer XE 2013 SP1.1.106 (also re-
ported as version 14.0.1) compilers to build and run the test
applications, and OpenMPI 1.6.1 as the MPI library and
runtime.

4.2 LAMMPS
LAMMPS is a molecular dynamics simulator, written in

C++, that uses MPI for interprocess communication and
synchronization. We obtained the LAMMPS source code
from the project’s Git repository, and used revision 42bb280c
dated 2014-04-15. We modified the LAMMPS makefile to
build on KIDS, and to link in our version of the mpiP li-
brary that produces communication topology matrix files.
We ran LAMMPS with the EAM benchmark problem input
file using 96 processes in a 4 ⇥ 4 ⇥ 6 3D Cartesian process
topology.

When solving the EAM benchmark problem, LAMMPS
uses MPI point-to-point operations in a 3D nearest neighbor
communication pattern, and the MPI broadcast, allreduce,
and scan collective operations. The broadcast operations are
all rooted at MPI rank 0. The version of mpiP we used for
this study models the rootless MPI allreduce operation as
a reduce operation to rank 0, followed by a broadcast from
0 to all other operations. It also models the scan operation
as a gather operation of data from all processes to rank 0,
which then computes the scan result and scatters the result
to all processes. This may not be how the underlying MPI
implements these collective operations, but because mpiP
operates at the MPI profiling interface, it has no information
about the underlying implementation.

Figure 5 shows visualizations of the communication ma-
trix produced by mpiP for the 96-process LAMMPS run,
the patterns recognized by AChax in this matrix, and the
matrices produced by removing those patterns. To expose
detail that would be hidden if the blue saturation color map
of Figure 3 were used, this figure uses a heat map color
palette with “hotter” colors (e.g., yellow, orange) indicating
larger values and “cooler” colors (e.g., blue, purple) indi-
cating smaller values. Zero values in the communication
matrix are indicated using white blocks. As shown in the
figure, AChax recognized the 3D nearest neighbor commu-
nication pattern, including the correct dimensions of the 3D
Cartesion topology used. Because of the way mpiP models
MPI Scan and MPI Allreduce, AChax cannot distinguish
between these operations and MPI Bcast and MPI Reduce,
and has recognized the communication as the latter pair of
patterns. Lacking more information about how the MPI
library implements its rootless communication operations,
and having mpiP expose that information, the resulting pat-
terns reported by AChax are equivalent as far as their use-
fulness. We can express the LAMMPS communication be-

havior using the following expression, using the scale of each
recognized pattern as a coe�cient:

CLAMMPS = 13354 ·Broadcast(root : 0)+

700 ·Reduce(root : 0)+

19318888 · 3DNearestNeighbor(

dims : (4, 4, 6),

periodic : True)

The error in this expression, visualized as a communication
matrix, is shown in Figure 5d.
At first glance, the residual matrix produced by remov-

ing all recognized patterns (Figure 5d) makes it appear as if
AChax did not correctly determine the scale of the 3D near-
est neighbor pattern, because the residual pattern appears
to match the pure 3D nearest neighbor pattern. In fact,
AChax did recognize the scale correctly: after removing the
recognized pattern, there is a zero element (circled in the fig-
ure) in one of the diagonals that must be non-zero for a 3D
nearest neighbor pattern. The residual matrix produced by
AChax after removing recognized patterns provides the in-
teresting insight that not only does LAMMPS use a 3D near-
est neighbor communication pattern, the amount of data
LAMMPS communicates between neighbors varies. The col-
oration of Figure 5d indicates that for the input problem we
used, the LAMMPS nearest neighbor communication trans-
ferred more data in some dimensions than others. More
data was sent by process with rank i to its neighbors with
rank i± 1 (yellow blocks in the figure) than to its neighbors
along the next dimension (blue blocks in the figure), and
that more than to its neighbors along the final dimension
(purple blocks in the figure). Furthermore, the amount of
data sent by each proces to its neighbor along that third
dimension varies, as indicated by the fact that removing the
recognized pattern with its constant scale caused only one of
the would-be-purple blocks to have a zero value. If all pro-
cesses communicated the same amount along this dimension,
the resulting matrix would have no non-zeros in these diag-
onals, and the purple-colored blocks in Figure 5d would not
be there.

4.3 LULESH
The Livermore Unstructured Lagrangian Explicit Shock

Hydrodynamics application [13] (LULESH) is a proxy ap-
plication meant to approximate a typical hydrodynamics
model such as ALE3D [22]. LULESH is one of the appli-
cations being used for hardware/software co-design within
the U.S. Department of Energy’s Exascale Co-Design Cen-
ter for Materials in Extreme Environments [7]. Unlike a full
application, LULESH solves a specific, hard-coded problem.
We used LULESH version 2.0.3 [14]. This version is written
in C++ and can be built for serial execution or parallel ex-
ecution using MPI or MPI+OpenMP. We ran LULESH on
KIDS with 216 processes in a 6⇥ 6⇥ 6 3D process topology.
LULESH uses a limited number of MPI communication

operations: non-blocking point-to-point sends and receives,
and the reduce and allreduce collective operations. Never-
theless, LULESH exhibits interesting communication pat-
terns for AChax to characterize.
Figure 6 shows visualizations of the communication ma-

trix produced by mpiP for the 216-process LULESH run,
the patterns recognized by AChax in this matrix, and the
intermediate matrices produced by removing the recognized

•  Pilot	
 implementa7on:	
 Python-­‐based	
 using	
 NumPy	
 and	
 SciPy	
 matrix	
 support	

–  PaCern	
 recognizers/generators	
 are	
 Python	
 classes	

•  Many-­‐to-­‐many,	
 Broadcast,	
 Reduce,	
 2D	
 Nearest	
 Neighbor,	
 3D	
 Nearest	
 Neighbor,	
 3D	
 Wavefront	
 (sweep)	
 from	
 a	
 corner,	
 Random	
 (generate	

only)	

•  Example:	
 LAMMPS	

–  Communica1on	
 matrix	
 collected	
 using	
 Oxbow’s	
 mpiP	
 for	
 96-­‐process	
 LAMMPS	
 run	
 of	
 EAM	
 benchmark	
 on	
 Keeneland	

Ini1al	
 Delivery	
 System	

–  Basically	
 a	
 3D	
 Nearest	
 Neighbor	
 paCern,	
 but	
 detected	
 as	
 imperfect	
 (red	
 circle	
 in	
 last	
 figure)	

Original	
 matrix	
 AEer	
 removing	
 broadcast	
 AEer	
 removing	
 reduce	

AEer	
 removing	
 3D	

nearest	
 neighbor,	

dimensions	
 (4,4,6),	

periodic	
 	

Automated	
 Characteriza1on	
 of	
 Message	
 Passing	
 Applica1on	

Communica1on	
 PaCerns	
 Empirical	
 Roofline	
 Toolkit	

Beyond the Textbook Roofline Model
v Nominally, Roofline is a throughput-oriented (streaming) performance model on a single level of memory or cache.

v In reality, architectures have multiple levels of memory and applications have hierarchical working sets.

v Thus, reuse, bandwidth, and working set sizes are important metrics in understanding performance.

v Expanded Roofline to capture performance on a two-level memory as a function of reuse and working set size…
§  GPU performance is highly dependent on use of shared vs. cache (application writer must choose implementation on kernel by kernel basis).
§  CPUs are much faster than GPUs in some regions…

Initial ERT Release
v Initial ERT release focused on characterizing and

visualizing the Flop/DRAM Roofline on CPU architectures.
§  Peak flops (using polynomial amenable to FMA instructions)
§  Bandwidths and capacities for each level of memory and cache

v Runs on…
§  Xeon (Edison), Xeon Phi (Babbage), Opteron (Hopper), BlueGene/Q

(Mira), Power7 and Power8

v Proxy real-world applications…
§  MPI+OpenMP implementation highlights any unintended NUMA issues.
§  Compiled C code (can the compiler SIMDize?)
§  Streaming (throughput-oriented) behavior with ample ILP, DLP, TLP

v Roofline Visualization…
§  Simple, portable Roofline chart viewer tool
§  Eclipse integration
§  Access to Roofline chart data stored in shared database

 for(i=…){
 sum01=_mm_add_pd(sum01,…b[i]…);

 sum23=_mm_add_pd(sum23,…b[i+2]…);
 sum45=_mm_add_pd(sum45,…b[i+4]…);

 sum67=_mm_add_pd(sum67,…b[i+6]…);
 }

1 2 4 8 16 1/8
1/4

1/2

128

64

32

16

8

4

2

G
F

lo
p

/s

Arithmetic Intensity

no SIMD

1

peak GFlop/s

Opteron 2356

(Barcelona)

50% SIMD
75% SIMD

full ILP, TLP, …

without SIMD,
codes become

compute-bound
earlier

without SIMD,
loose 50%

of potential
performance

peak FP Add GFlop/s

 for(i=…){
 sum0=_mm_add_sd(sum0,…b[i]…);

 sum1=_mm_add_sd(sum1,…b[i+1]…);
 sum2=_mm_add_sd(sum2,…b[i+2]…);

 sum3=_mm_add_sd(sum3,…b[i+3]…);
 }

 for(i=…){
 sum0+=b[i];

 sum1+=b[i+1];
 sum2+=b[i+2];

 sum3+=b[i+3];
 }

 10

 100

 1000

 0.01 0.1 1 10 100

GF
LO

Ps
 /

se
c

FLOPs / Byte

Empirical Roofline Graph (Results.Edison.MPI+OpenMP/Run.001)

353.8 GFLOPs/sec (Maximum)

L1
 - 1

69
5.8

 GB/s

L2
 - 1

04
3.4

 GB/s

L3
 - 6

54
.8

GB/s

DRAM - 7
6.5

 GB/s

1

10

100

1000

480 KB 960 KB 1920 KB 3 MB 30 MB 300 MB

M
em

or
y

R
eu

se
s

Ti
m

es

Active Working Set Size

CPU Memory Locality Study, Babbage
Outside Reuse Loop, 4 GB Working Set

 10

 100

 1000

 10000

E
ffe

ct
iv

e
B

an
dw

id
th

 (G
B

/s
)

43 65 52 96 107 137

369 523 436 549 443 142

1469 1741 1567 1048 695 143

2046 2279 2108 1155 673 142

1

10

100

1000

64 KB 384 KB 768 KB 3 MB 6 MB 30 MB 60 MB 120 MB

C
P

U
 M

em
or

y
R

eu
se

s
Ti

m
es

Active Working Set Size

CPU Memory Locality Study, Edison
Outside Reuse loop, 4GB Working Set

 10

 100

 1000

 10000

E
ffe

ct
iv

e
B

an
dw

id
th

 (G
B

/s
)

42 74 63 79 77 79 34 64

337 471 571 363 242 244 188 80

1506 1865 1797 1046 909 636 284 79

1852 1890 1864 1087 1046 642 365 80

1

10

100

1000

392 KB 784 KB 1568 KB 3136 KB6.125 MB12.25 MB24.5 MB

G
P

U
 M

em
or

y
R

eu
se

s
Ti

m
es

Active Working Set Size

GPU Memory Locality Study, Titan
Reuse within the kenel, Shared Memory

 1

 10

 100

 1000

E
ffe

ct
iv

e
B

an
dw

id
th

 (G
B

/s
)

34 71 150 105 53 24 4

139 279 576 397 209 96 16

204 388 812 546 297 137 23

214 406 852 566 311 143 24

1

10

100

1000

392 KB 784 KB 1568 KB 3136 KB6.125 MB12.25 MB24.5 MB

G
P

U
 M

em
or

y
R

eu
se

s
Ti

m
es

Active Working Set Size

GPU Memory Locality Study, Titan
Reuse within the kenel, Global Memory

 1

 10

 100

 1000

E
ffe

ct
iv

e
B

an
dw

id
th

 (G
B

/s
)

16 23 41 108 189 211 115

41 57 99 212 256 234 119

51 60 115 224 266 237 119

52 59 117 225 267 238 119

16 23 41 108 189 211 115

41 57 99 212 256 234 119

51 60 115 224 266 237 119

52 59 117 225 267 238 119

v CUDA 6.5 now supports Unified Memory (treat
device memory as OS-controlled page cache on
CPU memory)

v GPU Programmers must choose whether to…
§  use Unified memory and let the OS control everything
§  micromanage data allocation/movement/locality themselves
§  use zero copy memory and keep everything on the host.

v How does performance vary on Kepler GPUs
(e.g. ORNL’s Titan and NERSC’s Dirac)?
§  Zero copy memory performs very poorly (PCIe bandwidth

on every access) and has no benefit from temporal locality.
§  Page locked with explicit management works well for

large working sets (>4MB) with high temporal locality
(reuse 50x).

§  Unified memory behaves like explicit management getting a
benefit from temporal locality, but is 3x slower.

§  It seems explicit management of data movement and
locality is still required on Titan.

1

10

50

100

1 KB 16 KB 256 KB 4 MB 64 MB 1 GB

G
PU

 M
em

or
y

Re
us

es
 T

im
es

Working Set Size

Memory Ping-Pong Study, Dirac
Page-locked Host (Zero Copy)

 1

 2

 4

 8

 16

 32

 64

 128

Ef
fe

ct
ive

 B
an

dw
id

th
 (G

B/
s)

0.15 2.07 6.76 8.27 8.46 8.55

0.23 2.50 4.45 5.00 5.03 5.04

0.26 3.08 5.45 6.19 6.26 6.41

0.27 3.07 5.43 6.17 6.23 6.37

0.15 2.07 6.76 8.27 8.46 8.55

0.23 2.50 4.45 5.00 5.03 5.04

0.26 3.08 5.45 6.19 6.26 6.41

0.27 3.07 5.43 6.17 6.23 6.37

1

10

50

100

1 KB 16 KB 256 KB 4 MB 64 MB 1 GB

G
PU

 M
em

or
y

Re
us

es
 T

im
es

Working Set Size

Memory Ping-Pong Study, Dirac
Page-locked Host (Explicit Copy)

 1

 2

 4

 8

 16

 32

 64

 128

Ef
fe

ct
ive

 B
an

dw
id

th
 (G

B/
s)

0.10 1.19 5.76 7.51 7.64 7.70

0.21 2.74 11.46 13.78 13.71 13.70

0.29 4.72 50.66 111.7 112.6 113.0

0.30 4.95 60.18 157.1 157.7 156.4

0.10 1.19 5.76 7.51 7.64 7.70

0.21 2.74 11.46 13.78 13.71 13.70

0.29 4.72 50.66 111.7 112.6 113.0

0.30 4.95 60.18 157.1 157.7 156.4

1

10

50

100

1 KB 16 KB 256 KB 4 MB 64 MB 1 GB

G
PU

 M
em

or
y

Re
us

es
 T

im
es

Working Set Size

Memory Ping-Pong Study, Dirac
Unified Memory Management (Zero Copy)

 1

 2

 4

 8

 16

 32

 64

 128

Ef
fe

ct
ive

 B
an

dw
id

th
 (G

B/
s)

0.08 0.82 1.70 1.71 1.63 1.60

0.20 2.44 5.95 6.41 6.24 6.05

0.29 4.35 26.00 36.59 36.13 32.19

0.30 4.80 38.33 64.28 63.24 52.72

Samuel Williams, Brian Van Straalen, Terry Ligocki,
Leonid Oliker, Matt Cordery, Nick Wright

Lawrence Berkeley National Lab
Yu Jung (Linda) Lo
University of Utah

Wyatt Spear, Boyana Norris, Allen Malony,
Sameer Shende, Kevin Huck, Nick Chaimov

University of Oregon

Performance	
 API	
 –	
 PAPI	

PAPI	
 (Performance	
 Applica1on	
 Programming	
 Interface)	
 provides	
 the	
 tool	
 designer	

and	
 applica1on	
 engineer	
 with	
 a	
 consistent	
 interface	
 and	
 methodology	
 for	
 use	
 of	

the	
 performance	
 counter	
 hardware	
 found	
 in	
 most	
 major	
 microprocessors.	
 In	

addi1on,	
 it	
 provides	
 access	
 to	
 a	
 collec1on	
 of	
 components	
 that	
 expose	

performance	
 measurement	
 opportuni1es	
 across	
 the	
 hardware	
 and	
 so`ware.	

stack.	

Heike McCraw, Asim Yarkhan,
Sangamesh Ragate

University of Tennesee

Shirley Moore
University of Texas at El Paso

Autoperf	

v Simple	
 tool	
 for	
 performance	
 experiments	
 and	

associated	
 analysis	

v Adds	
 a	
 layer	
 of	
 abstrac1on	
 over	
 exis3ng	

performance	
 tools	

v Automates	
 tedious	
 and	
 error-­‐prone	
 tasks	
 	

•  Selec1ng	
 performance	
 counters	
 (minimize	
 #	

of	
 experiments	
 required)	

•  Using	
 available	
 measurement	
 tools:	
 PAPI,	

TAU,	
 HPCToolkit,	
 Open|SpeedShop,...	

•  Sefng	
 up	
 the	
 environment	
 for	
 each	
 tool,	

managing	
 sequen1al	
 and	
 batch	
 parallel	
 jobs	

on	
 different	
 architectures	

•  Genera1ng	
 selec1ve	
 profiling	
 configura1on	

based	
 on	
 sampling	
 results	

•  Configuring	
 access	
 to	
 databases	
 (e.g.	

TAUdb),	
 uploading	
 data	

•  Reusable	
 and	
 extensible	
 analyses	
 that	
 are	

easy	
 to	
 understand;	
 comparisons	
 across	

mul1ple	
 code	
 versions	

•  hCps://github.com/HPCL/autoperf.git	
 	

	
 v Example:	
 Studying	
 the	
 effects	
 of	
 op1miza1ons	
 on	
 a	

Geant4	
 applica1on	
 (SimplifiedCalorimeter)	
 compiled	

gcc	
 4.8	
 (any	
 two	
 versions	
 can	
 be	
 compared	
 this	
 way).	

Stalls	
 per	
 instruc7on	
 vs	
 total	

cycles:	
 -­‐O2	
 unexpectedly	

increases	
 stalls	
 per	
 instruc1on	

in	
 two	
 of	
 the	
 func1ons;	
 each	

circle’s	
 diameter	
 is	
 propor1onal	

to	
 the	
 corresponding	
 func1on’s	

frac1on	
 of	
 total	
 execu1on	
 1me.	

The	
 top	
 5	
 func1ons	
 are	
 labeled.	

Other	
 measurements	
 presented	

in	
 a	
 similar	
 manner	
 help	

determine	
 the	
 cause	
 of	
 the	

stalls.	

-­‐O2	
 (green)	
 	
 vs.	
 -­‐O0	
 (yellow)	

-­‐O3	
 (green)	
 	
 vs.	
 	

-­‐O0	
 (yellow)	

PAPI-­‐NUMA	

•  Experimental	
 	
 (not	
 yet	
 released)	

•  Sampling	
 support	
 for	
 cache	
 and	

memory	
 events,	
 including	
 data	

source,	
 latency,	
 etc.	

•  Intended	
 to	
 provide	
 a	
 standard	

interface	
 to	
 data	
 needed	
 for	

NUMA	
 performance	
 analysis	
 	
 	

and	
 op1miza1on	
 	

SUPER	

Technology	
 Integra1on	

