
6938568

2809800

many-to-many collective
{'scale' : 1024}

2551752

broadcast
{'scale' : 4096,

'root' : 0}

reduce
{'scale' : 16,
'root' : 3}

3D nearest neighbor
{'dims': (8, 2, 4),

'scale' : 1024,
'periodic' : [False, False, False]}

2D nearest neighbor
{'dims': (8, 8),
'scale' : 8192,

'periodic' : [True, True]}

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 0, 0)}

2519496

broadcast
{'scale' : 512,

'root' : 6}

reduce
{'scale' : 16,
'root' : 3}

3D nearest neighbor
{'dims': (8, 2, 4),

'scale' : 1024,
'periodic' : [False, False, False]}

2D nearest neighbor
{'dims': (8, 8),
'scale' : 8192,

'periodic' : [True, True]}

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 0, 0)}

2518488

reduce
{'scale' : 16,
'root' : 3}

3D nearest neighbor
{'dims': (8, 2, 4),

'scale' : 1024,
'periodic' : [False, False, False]}

2D nearest neighbor
{'dims': (8, 8),
'scale' : 8192,

'periodic' : [True, True]}

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 0, 0)}

2239960

3D nearest neighbor
{'dims': (8, 2, 4),

'scale' : 1024,
'periodic' : [False, False, False]}

421336

2D nearest neighbor
{'dims': (8, 8),
'scale' : 8192,

'periodic' : [True, True]}

2379224

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 0, 0)}

404952

2D nearest neighbor
{'dims': (8, 8),
'scale' : 7168,

'periodic' : [True, True]}

200152

2D nearest neighbor
{'dims': (16, 4),

'scale' : 1024,
'periodic' : [False, False]}

544216

2D nearest neighbor
{'dims': (8, 8),
'scale' : 7168,

'periodic' : [True, True]}

2239960

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 1, 0)}

404952

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (1, 1, 0)}

667096

2D nearest neighbor
{'dims': (8, 8),
'scale' : 6144,

'periodic' : [True, True]}

Background
v The Roofline model provides a visually-intuitive approach to analyzing application performance.

§  Decomposes application into key numerical kernels
§  Principally oriented around throughput metrics (flop/s vs. GB/s)
§  Uses machine and application balance to determine performance bound
§  Expandable by including ILP, DLP, TLP, cache, and memory access pattern effects

v To date, application of the Roofline has been challenged on four fronts…
§  It requires a model of processor microarchitecture. Many researchers often lack the computer architecture background to create such a model.
§  It requires accurate monitoring of kernel execution including DRAM data movement, SIMDization, ILP stalls, use of TLP, etc… This information is difficult to

extract from some tools and impossible to gather from some processors.
§  It requires estimates of the data movement and computational requirements of each numerical kernel. e.g. what is the minimum data movement and

computation each kernel requires? Within each kernel, is there any inherent DLP or ILP? Since existing tools are unable to extract these parameters, the
model requires application scientists be knowledgeable of both computer architecture and application software (a rare combination).

§  Visualization of the model was left to the user. In practice, this varied from whiteboard doodles, to elaborate GNU and MATLAB plots.

v To that end, SUPER and FastMath have collaborated on developing a Roofline Toolkit to facilitate use of the model.

Technology Translation: Modeling, Measurement and Analysis
Philip C. Roth, Jeremy S. Meredith,

Jeffrey S. Vetter
Oak Ridge National Laboratory

(Partial) support for this work was provided through the Scientific Discovery
through Advanced Computing (SciDAC) program funded by U.S. Department of
Energy, Office of Science, Advanced Scientific Computing Research (and Basic
Energy Sciences/Biological and Environmental Research/High Energy Physics/
Fusion Energy Sciences/Nuclear Physics). LLNL-POST-657319.

(Partial) support for this work was provided through the Scientific Discovery through
Advanced Computing (SciDAC) program funded by U.S. Department of Energy, Office
of Science, Advanced Scientific Computing Research (and Basic Energy Sciences/
Biological and Environmental Research/High Energy Physics/Fusion Energy Sciences/
Nuclear Physics) under award numbers DE-SC0006844, DESC0006947.

•  The	 Problem	
– We	 want	 a	 concise	 way	 to	 express	 applica1on	 communica1on	 demands	
–  E.g.,	 “3D	 Nearest	 Neighbor,	 broadcast,	 and	 reduce”	 instead	 of	 communica1on	
matrices	

–  But…strong	 exper1se	 needed	 to	 iden1fy	 paCerns	 from	 communica1on	 matrices	
•  Our	 Approach	

–  Automated	 search	 using	 a	 library	 of	 paCerns	 to	 iden1fy	 collec1on	 of	 parameterized	
paCerns	 that	 best	 explains	 observed	 communica1on	

–  Adopts	 idea	 from	 astronomy’s	 sky	 subtrac1on:	 given	 an	 image,	 remove	 the	 known	 to	
make	 it	 easier	 to	 iden1fy	 the	 unknown	

–  Input	 is	 communica1on	 matrix,	 e.g.,	 as	 collected	 by	 the	 Oxbow	 version	 of	 mpiP	 (hCp://oxbow.ornl.gov)	
–  Each	 search	 step	 involves	 recognizing	 a	 paCern,	 scaling	 the	 recognized	 paCern	 as	 large	 as	 possible,	 and	 removing	
the	 scaled	 paCern	 to	 produce	 a	 communica1on	 matrix	 containing	 as-‐yet-‐unrecognized	 communica1on	 behavior	

-‐ =

Recognizing	 and	 removing	 the	 contribu3on	 of	 a	 2D	 nearest	 neighbor	 pa9ern	 in	 a	 synthe3c	
communica3on	 matrix.	 	 This	 represents	 one	 step	 in	 a	 search-‐based	 approach.	

•  Search	 Results	 Tree	
–  Communica1on	 matrices	 at	 nodes	

•  Ini1al	 communica1on	 matrix	 associated	 with	 tree	 root	
–  Recognized,	 parameterized	 paCerns	 label	 edges	
–  Child	 node’s	 matrix	 is	 result	 of	 subtrac1ng	 recognized	
paCern	 from	 parent’s	 matrix	

– When	 child	 node	 is	 added	 to	 tree,	 recursively	 apply	
search	 star1ng	 at	 the	 child	

Search	 results	 tree	 for	
synthe3c	 communica3on	
matrix.	 	 Nodes	 are	 labeled	
with	 residual	 of	
associated	
communica3on	 matrix.	 	
Triangles	 indicate	 por3ons	
of	 the	 tree	 that	 are	 elided	
for	 space.	

•  Output	
-  Residual	 of	 matrix	 is	 total	 amount	 of	 communica1on	 volume	 represented	 in	 matrix	
-  When	 search	 completes,	 path	 from	 root	 to	 leaf	 with	 smallest	 residual	 indicates	 collec1on	 of	 paCerns	 that	 best	

explain	 original	 matrix	 (red	 path	 in	 example	 search	 results	 tree)	
-  Output	 from	 the	 automated	 search	 is	 a	 list	 of	 parameterized	 paCerns	 that	 best	 explain	 input	 communica1on	

matrix	
-  Output	 is	 trivially	 converted	 into	 expression	 with	 parameterized	 paCerns	 as	 terms,	 e.g.:	

4. CASE STUDIES

4.1 Test System
We used the Keeneland Initial Delivery System [29] (KIDS)

for our case studies. KIDS is a Georgia Institute of Tech-
nology cluster deployed at Oak Ridge National Laboratory.
The system contained 120 HP ProLiant SL390 G7 compute
nodes. Each compute node contained 24 GB memory, two
Intel Xeon X5660 processors running at 2.80 GHz, and three
NVIDIA M2090 GPUs. The nodes were connected with an
Infiniband QDR interconnection network. The system used
the CentOS 6.3 Linux distribution on its compute nodes.
We used the Intel Composer XE 2013 SP1.1.106 (also re-
ported as version 14.0.1) compilers to build and run the test
applications, and OpenMPI 1.6.1 as the MPI library and
runtime.

4.2 LAMMPS
LAMMPS is a molecular dynamics simulator, written in

C++, that uses MPI for interprocess communication and
synchronization. We obtained the LAMMPS source code
from the project’s Git repository, and used revision 42bb280c
dated 2014-04-15. We modified the LAMMPS makefile to
build on KIDS, and to link in our version of the mpiP li-
brary that produces communication topology matrix files.
We ran LAMMPS with the EAM benchmark problem input
file using 96 processes in a 4 ⇥ 4 ⇥ 6 3D Cartesian process
topology.

When solving the EAM benchmark problem, LAMMPS
uses MPI point-to-point operations in a 3D nearest neighbor
communication pattern, and the MPI broadcast, allreduce,
and scan collective operations. The broadcast operations are
all rooted at MPI rank 0. The version of mpiP we used for
this study models the rootless MPI allreduce operation as
a reduce operation to rank 0, followed by a broadcast from
0 to all other operations. It also models the scan operation
as a gather operation of data from all processes to rank 0,
which then computes the scan result and scatters the result
to all processes. This may not be how the underlying MPI
implements these collective operations, but because mpiP
operates at the MPI profiling interface, it has no information
about the underlying implementation.

Figure 5 shows visualizations of the communication ma-
trix produced by mpiP for the 96-process LAMMPS run,
the patterns recognized by AChax in this matrix, and the
matrices produced by removing those patterns. To expose
detail that would be hidden if the blue saturation color map
of Figure 3 were used, this figure uses a heat map color
palette with “hotter” colors (e.g., yellow, orange) indicating
larger values and “cooler” colors (e.g., blue, purple) indi-
cating smaller values. Zero values in the communication
matrix are indicated using white blocks. As shown in the
figure, AChax recognized the 3D nearest neighbor commu-
nication pattern, including the correct dimensions of the 3D
Cartesion topology used. Because of the way mpiP models
MPI Scan and MPI Allreduce, AChax cannot distinguish
between these operations and MPI Bcast and MPI Reduce,
and has recognized the communication as the latter pair of
patterns. Lacking more information about how the MPI
library implements its rootless communication operations,
and having mpiP expose that information, the resulting pat-
terns reported by AChax are equivalent as far as their use-
fulness. We can express the LAMMPS communication be-

havior using the following expression, using the scale of each
recognized pattern as a coe�cient:

CLAMMPS = 13354 ·Broadcast(root : 0)+

700 ·Reduce(root : 0)+

19318888 · 3DNearestNeighbor(

dims : (4, 4, 6),

periodic : True)

The error in this expression, visualized as a communication
matrix, is shown in Figure 5d.
At first glance, the residual matrix produced by remov-

ing all recognized patterns (Figure 5d) makes it appear as if
AChax did not correctly determine the scale of the 3D near-
est neighbor pattern, because the residual pattern appears
to match the pure 3D nearest neighbor pattern. In fact,
AChax did recognize the scale correctly: after removing the
recognized pattern, there is a zero element (circled in the fig-
ure) in one of the diagonals that must be non-zero for a 3D
nearest neighbor pattern. The residual matrix produced by
AChax after removing recognized patterns provides the in-
teresting insight that not only does LAMMPS use a 3D near-
est neighbor communication pattern, the amount of data
LAMMPS communicates between neighbors varies. The col-
oration of Figure 5d indicates that for the input problem we
used, the LAMMPS nearest neighbor communication trans-
ferred more data in some dimensions than others. More
data was sent by process with rank i to its neighbors with
rank i± 1 (yellow blocks in the figure) than to its neighbors
along the next dimension (blue blocks in the figure), and
that more than to its neighbors along the final dimension
(purple blocks in the figure). Furthermore, the amount of
data sent by each proces to its neighbor along that third
dimension varies, as indicated by the fact that removing the
recognized pattern with its constant scale caused only one of
the would-be-purple blocks to have a zero value. If all pro-
cesses communicated the same amount along this dimension,
the resulting matrix would have no non-zeros in these diag-
onals, and the purple-colored blocks in Figure 5d would not
be there.

4.3 LULESH
The Livermore Unstructured Lagrangian Explicit Shock

Hydrodynamics application [13] (LULESH) is a proxy ap-
plication meant to approximate a typical hydrodynamics
model such as ALE3D [22]. LULESH is one of the appli-
cations being used for hardware/software co-design within
the U.S. Department of Energy’s Exascale Co-Design Cen-
ter for Materials in Extreme Environments [7]. Unlike a full
application, LULESH solves a specific, hard-coded problem.
We used LULESH version 2.0.3 [14]. This version is written
in C++ and can be built for serial execution or parallel ex-
ecution using MPI or MPI+OpenMP. We ran LULESH on
KIDS with 216 processes in a 6⇥ 6⇥ 6 3D process topology.
LULESH uses a limited number of MPI communication

operations: non-blocking point-to-point sends and receives,
and the reduce and allreduce collective operations. Never-
theless, LULESH exhibits interesting communication pat-
terns for AChax to characterize.
Figure 6 shows visualizations of the communication ma-

trix produced by mpiP for the 216-process LULESH run,
the patterns recognized by AChax in this matrix, and the
intermediate matrices produced by removing the recognized

•  Pilot	 implementa7on:	 Python-‐based	 using	 NumPy	 and	 SciPy	 matrix	 support	
–  PaCern	 recognizers/generators	 are	 Python	 classes	

•  Many-‐to-‐many,	 Broadcast,	 Reduce,	 2D	 Nearest	 Neighbor,	 3D	 Nearest	 Neighbor,	 3D	 Wavefront	 (sweep)	 from	 a	 corner,	 Random	 (generate	
only)	

•  Example:	 LAMMPS	
–  Communica1on	 matrix	 collected	 using	 Oxbow’s	 mpiP	 for	 96-‐process	 LAMMPS	 run	 of	 EAM	 benchmark	 on	 Keeneland	
Ini1al	 Delivery	 System	

–  Basically	 a	 3D	 Nearest	 Neighbor	 paCern,	 but	 detected	 as	 imperfect	 (red	 circle	 in	 last	 figure)	

Original	 matrix	 AEer	 removing	 broadcast	 AEer	 removing	 reduce	

AEer	 removing	 3D	
nearest	 neighbor,	
dimensions	 (4,4,6),	
periodic	 	

Automated	 Characteriza1on	 of	 Message	 Passing	 Applica1on	
Communica1on	 PaCerns	 Empirical	 Roofline	 Toolkit	

Beyond the Textbook Roofline Model
v Nominally, Roofline is a throughput-oriented (streaming) performance model on a single level of memory or cache.

v In reality, architectures have multiple levels of memory and applications have hierarchical working sets.

v Thus, reuse, bandwidth, and working set sizes are important metrics in understanding performance.

v Expanded Roofline to capture performance on a two-level memory as a function of reuse and working set size…
§  GPU performance is highly dependent on use of shared vs. cache (application writer must choose implementation on kernel by kernel basis).
§  CPUs are much faster than GPUs in some regions…

Initial ERT Release
v Initial ERT release focused on characterizing and

visualizing the Flop/DRAM Roofline on CPU architectures.
§  Peak flops (using polynomial amenable to FMA instructions)
§  Bandwidths and capacities for each level of memory and cache

v Runs on…
§  Xeon (Edison), Xeon Phi (Babbage), Opteron (Hopper), BlueGene/Q

(Mira), Power7 and Power8

v Proxy real-world applications…
§  MPI+OpenMP implementation highlights any unintended NUMA issues.
§  Compiled C code (can the compiler SIMDize?)
§  Streaming (throughput-oriented) behavior with ample ILP, DLP, TLP

v Roofline Visualization…
§  Simple, portable Roofline chart viewer tool
§  Eclipse integration
§  Access to Roofline chart data stored in shared database

 for(i=…){
 sum01=_mm_add_pd(sum01,…b[i]…);

 sum23=_mm_add_pd(sum23,…b[i+2]…);
 sum45=_mm_add_pd(sum45,…b[i+4]…);

 sum67=_mm_add_pd(sum67,…b[i+6]…);
 }

1 2 4 8 16 1/8
1/4

1/2

128

64

32

16

8

4

2

G
F

lo
p

/s

Arithmetic Intensity

no SIMD

1

peak GFlop/s

Opteron 2356

(Barcelona)

50% SIMD
75% SIMD

full ILP, TLP, …

without SIMD,
codes become

compute-bound
earlier

without SIMD,
loose 50%

of potential
performance

peak FP Add GFlop/s

 for(i=…){
 sum0=_mm_add_sd(sum0,…b[i]…);

 sum1=_mm_add_sd(sum1,…b[i+1]…);
 sum2=_mm_add_sd(sum2,…b[i+2]…);

 sum3=_mm_add_sd(sum3,…b[i+3]…);
 }

 for(i=…){
 sum0+=b[i];

 sum1+=b[i+1];
 sum2+=b[i+2];

 sum3+=b[i+3];
 }

 10

 100

 1000

 0.01 0.1 1 10 100

GF
LO

Ps
 /

se
c

FLOPs / Byte

Empirical Roofline Graph (Results.Edison.MPI+OpenMP/Run.001)

353.8 GFLOPs/sec (Maximum)

L1
 - 1

69
5.8

 GB/s

L2
 - 1

04
3.4

 GB/s

L3
 - 6

54
.8

GB/s

DRAM - 7
6.5

 GB/s

1

10

100

1000

480 KB 960 KB 1920 KB 3 MB 30 MB 300 MB

M
em

or
y

R
eu

se
s

Ti
m

es

Active Working Set Size

CPU Memory Locality Study, Babbage
Outside Reuse Loop, 4 GB Working Set

 10

 100

 1000

 10000

E
ffe

ct
iv

e
B

an
dw

id
th

 (G
B

/s
)

43 65 52 96 107 137

369 523 436 549 443 142

1469 1741 1567 1048 695 143

2046 2279 2108 1155 673 142

1

10

100

1000

64 KB 384 KB 768 KB 3 MB 6 MB 30 MB 60 MB 120 MB

C
P

U
 M

em
or

y
R

eu
se

s
Ti

m
es

Active Working Set Size

CPU Memory Locality Study, Edison
Outside Reuse loop, 4GB Working Set

 10

 100

 1000

 10000

E
ffe

ct
iv

e
B

an
dw

id
th

 (G
B

/s
)

42 74 63 79 77 79 34 64

337 471 571 363 242 244 188 80

1506 1865 1797 1046 909 636 284 79

1852 1890 1864 1087 1046 642 365 80

1

10

100

1000

392 KB 784 KB 1568 KB 3136 KB6.125 MB12.25 MB24.5 MB

G
P

U
 M

em
or

y
R

eu
se

s
Ti

m
es

Active Working Set Size

GPU Memory Locality Study, Titan
Reuse within the kenel, Shared Memory

 1

 10

 100

 1000

E
ffe

ct
iv

e
B

an
dw

id
th

 (G
B

/s
)

34 71 150 105 53 24 4

139 279 576 397 209 96 16

204 388 812 546 297 137 23

214 406 852 566 311 143 24

1

10

100

1000

392 KB 784 KB 1568 KB 3136 KB6.125 MB12.25 MB24.5 MB

G
P

U
 M

em
or

y
R

eu
se

s
Ti

m
es

Active Working Set Size

GPU Memory Locality Study, Titan
Reuse within the kenel, Global Memory

 1

 10

 100

 1000

E
ffe

ct
iv

e
B

an
dw

id
th

 (G
B

/s
)

16 23 41 108 189 211 115

41 57 99 212 256 234 119

51 60 115 224 266 237 119

52 59 117 225 267 238 119

16 23 41 108 189 211 115

41 57 99 212 256 234 119

51 60 115 224 266 237 119

52 59 117 225 267 238 119

v CUDA 6.5 now supports Unified Memory (treat
device memory as OS-controlled page cache on
CPU memory)

v GPU Programmers must choose whether to…
§  use Unified memory and let the OS control everything
§  micromanage data allocation/movement/locality themselves
§  use zero copy memory and keep everything on the host.

v How does performance vary on Kepler GPUs
(e.g. ORNL’s Titan and NERSC’s Dirac)?
§  Zero copy memory performs very poorly (PCIe bandwidth

on every access) and has no benefit from temporal locality.
§  Page locked with explicit management works well for

large working sets (>4MB) with high temporal locality
(reuse 50x).

§  Unified memory behaves like explicit management getting a
benefit from temporal locality, but is 3x slower.

§  It seems explicit management of data movement and
locality is still required on Titan.

1

10

50

100

1 KB 16 KB 256 KB 4 MB 64 MB 1 GB

G
PU

 M
em

or
y

Re
us

es
 T

im
es

Working Set Size

Memory Ping-Pong Study, Dirac
Page-locked Host (Zero Copy)

 1

 2

 4

 8

 16

 32

 64

 128

Ef
fe

ct
ive

 B
an

dw
id

th
 (G

B/
s)

0.15 2.07 6.76 8.27 8.46 8.55

0.23 2.50 4.45 5.00 5.03 5.04

0.26 3.08 5.45 6.19 6.26 6.41

0.27 3.07 5.43 6.17 6.23 6.37

0.15 2.07 6.76 8.27 8.46 8.55

0.23 2.50 4.45 5.00 5.03 5.04

0.26 3.08 5.45 6.19 6.26 6.41

0.27 3.07 5.43 6.17 6.23 6.37

1

10

50

100

1 KB 16 KB 256 KB 4 MB 64 MB 1 GB

G
PU

 M
em

or
y

Re
us

es
 T

im
es

Working Set Size

Memory Ping-Pong Study, Dirac
Page-locked Host (Explicit Copy)

 1

 2

 4

 8

 16

 32

 64

 128

Ef
fe

ct
ive

 B
an

dw
id

th
 (G

B/
s)

0.10 1.19 5.76 7.51 7.64 7.70

0.21 2.74 11.46 13.78 13.71 13.70

0.29 4.72 50.66 111.7 112.6 113.0

0.30 4.95 60.18 157.1 157.7 156.4

0.10 1.19 5.76 7.51 7.64 7.70

0.21 2.74 11.46 13.78 13.71 13.70

0.29 4.72 50.66 111.7 112.6 113.0

0.30 4.95 60.18 157.1 157.7 156.4

1

10

50

100

1 KB 16 KB 256 KB 4 MB 64 MB 1 GB

G
PU

 M
em

or
y

Re
us

es
 T

im
es

Working Set Size

Memory Ping-Pong Study, Dirac
Unified Memory Management (Zero Copy)

 1

 2

 4

 8

 16

 32

 64

 128

Ef
fe

ct
ive

 B
an

dw
id

th
 (G

B/
s)

0.08 0.82 1.70 1.71 1.63 1.60

0.20 2.44 5.95 6.41 6.24 6.05

0.29 4.35 26.00 36.59 36.13 32.19

0.30 4.80 38.33 64.28 63.24 52.72

Samuel Williams, Brian Van Straalen, Terry Ligocki,
Leonid Oliker, Matt Cordery, Nick Wright

Lawrence Berkeley National Lab
Yu Jung (Linda) Lo
University of Utah

Wyatt Spear, Boyana Norris, Allen Malony,
Sameer Shende, Kevin Huck, Nick Chaimov

University of Oregon

Performance	 API	 –	 PAPI	
PAPI	 (Performance	 Applica1on	 Programming	 Interface)	 provides	 the	 tool	 designer	
and	 applica1on	 engineer	 with	 a	 consistent	 interface	 and	 methodology	 for	 use	 of	
the	 performance	 counter	 hardware	 found	 in	 most	 major	 microprocessors.	 In	
addi1on,	 it	 provides	 access	 to	 a	 collec1on	 of	 components	 that	 expose	
performance	 measurement	 opportuni1es	 across	 the	 hardware	 and	 so`ware.	
stack.	

Heike McCraw, Asim Yarkhan,
Sangamesh Ragate

University of Tennesee

Shirley Moore
University of Texas at El Paso

Autoperf	
v Simple	 tool	 for	 performance	 experiments	 and	

associated	 analysis	
v Adds	 a	 layer	 of	 abstrac1on	 over	 exis3ng	

performance	 tools	
v Automates	 tedious	 and	 error-‐prone	 tasks	 	

•  Selec1ng	 performance	 counters	 (minimize	 #	
of	 experiments	 required)	

•  Using	 available	 measurement	 tools:	 PAPI,	
TAU,	 HPCToolkit,	 Open|SpeedShop,...	

•  Sefng	 up	 the	 environment	 for	 each	 tool,	
managing	 sequen1al	 and	 batch	 parallel	 jobs	
on	 different	 architectures	

•  Genera1ng	 selec1ve	 profiling	 configura1on	
based	 on	 sampling	 results	

•  Configuring	 access	 to	 databases	 (e.g.	
TAUdb),	 uploading	 data	

•  Reusable	 and	 extensible	 analyses	 that	 are	
easy	 to	 understand;	 comparisons	 across	
mul1ple	 code	 versions	

•  hCps://github.com/HPCL/autoperf.git	 	
	 v Example:	 Studying	 the	 effects	 of	 op1miza1ons	 on	 a	

Geant4	 applica1on	 (SimplifiedCalorimeter)	 compiled	
gcc	 4.8	 (any	 two	 versions	 can	 be	 compared	 this	 way).	

Stalls	 per	 instruc7on	 vs	 total	
cycles:	 -‐O2	 unexpectedly	
increases	 stalls	 per	 instruc1on	
in	 two	 of	 the	 func1ons;	 each	
circle’s	 diameter	 is	 propor1onal	
to	 the	 corresponding	 func1on’s	
frac1on	 of	 total	 execu1on	 1me.	
The	 top	 5	 func1ons	 are	 labeled.	
Other	 measurements	 presented	
in	 a	 similar	 manner	 help	
determine	 the	 cause	 of	 the	
stalls.	

-‐O2	 (green)	 	 vs.	 -‐O0	 (yellow)	

-‐O3	 (green)	 	 vs.	 	
-‐O0	 (yellow)	

PAPI-‐NUMA	
•  Experimental	 	 (not	 yet	 released)	
•  Sampling	 support	 for	 cache	 and	

memory	 events,	 including	 data	
source,	 latency,	 etc.	

•  Intended	 to	 provide	 a	 standard	
interface	 to	 data	 needed	 for	
NUMA	 performance	 analysis	 	 	
and	 op1miza1on	 	

SUPER	
Technology	 Integra1on	

