
6938568

2809800

many-to-many collective
{'scale' : 1024}

2551752

broadcast
{'scale' : 4096,

'root' : 0}

reduce
{'scale' : 16,
'root' : 3}

3D nearest neighbor
{'dims': (8, 2, 4),

'scale' : 1024,
'periodic' : [False, False, False]}

2D nearest neighbor
{'dims': (8, 8),
'scale' : 8192,

'periodic' : [True, True]}

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 0, 0)}

2519496

broadcast
{'scale' : 512,

'root' : 6}

reduce
{'scale' : 16,
'root' : 3}

3D nearest neighbor
{'dims': (8, 2, 4),

'scale' : 1024,
'periodic' : [False, False, False]}

2D nearest neighbor
{'dims': (8, 8),
'scale' : 8192,

'periodic' : [True, True]}

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 0, 0)}

2518488

reduce
{'scale' : 16,
'root' : 3}

3D nearest neighbor
{'dims': (8, 2, 4),

'scale' : 1024,
'periodic' : [False, False, False]}

2D nearest neighbor
{'dims': (8, 8),
'scale' : 8192,

'periodic' : [True, True]}

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 0, 0)}

2239960

3D nearest neighbor
{'dims': (8, 2, 4),

'scale' : 1024,
'periodic' : [False, False, False]}

421336

2D nearest neighbor
{'dims': (8, 8),
'scale' : 8192,

'periodic' : [True, True]}

2379224

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 0, 0)}

404952

2D nearest neighbor
{'dims': (8, 8),
'scale' : 7168,

'periodic' : [True, True]}

200152

2D nearest neighbor
{'dims': (16, 4),

'scale' : 1024,
'periodic' : [False, False]}

544216

2D nearest neighbor
{'dims': (8, 8),
'scale' : 7168,

'periodic' : [True, True]}

2239960

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (0, 1, 0)}

404952

3D sweep
{'dims': (8, 2, 4),

'scale' : 1024,
'corner' : (1, 1, 0)}

667096

2D nearest neighbor
{'dims': (8, 8),
'scale' : 6144,

'periodic' : [True, True]}

Background 
v The Roofline model provides a visually-intuitive approach to analyzing application performance.  

§  Decomposes application into key numerical kernels 
§  Principally oriented around throughput metrics (flop/s vs. GB/s) 
§  Uses machine and application balance to determine performance bound 
§  Expandable by including ILP, DLP, TLP, cache, and memory access pattern effects 

v To date, application of the Roofline has been challenged on four fronts… 
§  It requires a model of processor microarchitecture.  Many researchers often lack the computer architecture background to create such a model. 
§  It requires accurate monitoring of kernel execution including DRAM data movement, SIMDization, ILP stalls, use of TLP, etc…  This information is difficult to 

extract from some tools and impossible to gather from some processors. 
§  It requires estimates of the data movement and computational requirements of each numerical kernel.  e.g. what is the minimum data movement and 

computation each kernel requires?  Within each kernel, is there any inherent DLP or ILP?  Since existing tools are unable to extract these parameters, the 
model requires application scientists be knowledgeable of both computer architecture and application software (a rare combination). 

§  Visualization of the model was left to the user.  In practice, this varied from whiteboard doodles, to elaborate GNU and MATLAB plots.  

v To that end, SUPER and FastMath have collaborated on developing a Roofline Toolkit to facilitate use of the model. 
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•  The	  Problem	  
– We	  want	  a	  concise	  way	  to	  express	  applica1on	  communica1on	  demands	  
–  E.g.,	  “3D	  Nearest	  Neighbor,	  broadcast,	  and	  reduce”	  instead	  of	  communica1on	  
matrices	  

–  But…strong	  exper1se	  needed	  to	  iden1fy	  paCerns	  from	  communica1on	  matrices	  
•  Our	  Approach	  

–  Automated	  search	  using	  a	  library	  of	  paCerns	  to	  iden1fy	  collec1on	  of	  parameterized	  
paCerns	  that	  best	  explains	  observed	  communica1on	  

–  Adopts	  idea	  from	  astronomy’s	  sky	  subtrac1on:	  given	  an	  image,	  remove	  the	  known	  to	  
make	  it	  easier	  to	  iden1fy	  the	  unknown	  

–  Input	  is	  communica1on	  matrix,	  e.g.,	  as	  collected	  by	  the	  Oxbow	  version	  of	  mpiP	  (hCp://oxbow.ornl.gov)	  
–  Each	  search	  step	  involves	  recognizing	  a	  paCern,	  scaling	  the	  recognized	  paCern	  as	  large	  as	  possible,	  and	  removing	  
the	  scaled	  paCern	  to	  produce	  a	  communica1on	  matrix	  containing	  as-‐yet-‐unrecognized	  communica1on	  behavior	  

-‐ =

Recognizing	  and	  removing	  the	  contribu3on	  of	  a	  2D	  nearest	  neighbor	  pa9ern	  in	  a	  synthe3c	  
communica3on	  matrix.	  	  This	  represents	  one	  step	  in	  a	  search-‐based	  approach.	  

•  Search	  Results	  Tree	  
–  Communica1on	  matrices	  at	  nodes	  

•  Ini1al	  communica1on	  matrix	  associated	  with	  tree	  root	  
–  Recognized,	  parameterized	  paCerns	  label	  edges	  
–  Child	  node’s	  matrix	  is	  result	  of	  subtrac1ng	  recognized	  
paCern	  from	  parent’s	  matrix	  

– When	  child	  node	  is	  added	  to	  tree,	  recursively	  apply	  
search	  star1ng	  at	  the	  child	  

Search	  results	  tree	  for	  
synthe3c	  communica3on	  
matrix.	  	  Nodes	  are	  labeled	  
with	  residual	  of	  
associated	  
communica3on	  matrix.	  	  
Triangles	  indicate	  por3ons	  
of	  the	  tree	  that	  are	  elided	  
for	  space.	  

•  Output	  
-  Residual	  of	  matrix	  is	  total	  amount	  of	  communica1on	  volume	  represented	  in	  matrix	  
-  When	  search	  completes,	  path	  from	  root	  to	  leaf	  with	  smallest	  residual	  indicates	  collec1on	  of	  paCerns	  that	  best	  

explain	  original	  matrix	  (red	  path	  in	  example	  search	  results	  tree)	  
-  Output	  from	  the	  automated	  search	  is	  a	  list	  of	  parameterized	  paCerns	  that	  best	  explain	  input	  communica1on	  

matrix	  
-  Output	  is	  trivially	  converted	  into	  expression	  with	  parameterized	  paCerns	  as	  terms,	  e.g.:	  

4. CASE STUDIES

4.1 Test System
We used the Keeneland Initial Delivery System [29] (KIDS)

for our case studies. KIDS is a Georgia Institute of Tech-
nology cluster deployed at Oak Ridge National Laboratory.
The system contained 120 HP ProLiant SL390 G7 compute
nodes. Each compute node contained 24 GB memory, two
Intel Xeon X5660 processors running at 2.80 GHz, and three
NVIDIA M2090 GPUs. The nodes were connected with an
Infiniband QDR interconnection network. The system used
the CentOS 6.3 Linux distribution on its compute nodes.
We used the Intel Composer XE 2013 SP1.1.106 (also re-
ported as version 14.0.1) compilers to build and run the test
applications, and OpenMPI 1.6.1 as the MPI library and
runtime.

4.2 LAMMPS
LAMMPS is a molecular dynamics simulator, written in

C++, that uses MPI for interprocess communication and
synchronization. We obtained the LAMMPS source code
from the project’s Git repository, and used revision 42bb280c
dated 2014-04-15. We modified the LAMMPS makefile to
build on KIDS, and to link in our version of the mpiP li-
brary that produces communication topology matrix files.
We ran LAMMPS with the EAM benchmark problem input
file using 96 processes in a 4 ⇥ 4 ⇥ 6 3D Cartesian process
topology.

When solving the EAM benchmark problem, LAMMPS
uses MPI point-to-point operations in a 3D nearest neighbor
communication pattern, and the MPI broadcast, allreduce,
and scan collective operations. The broadcast operations are
all rooted at MPI rank 0. The version of mpiP we used for
this study models the rootless MPI allreduce operation as
a reduce operation to rank 0, followed by a broadcast from
0 to all other operations. It also models the scan operation
as a gather operation of data from all processes to rank 0,
which then computes the scan result and scatters the result
to all processes. This may not be how the underlying MPI
implements these collective operations, but because mpiP
operates at the MPI profiling interface, it has no information
about the underlying implementation.

Figure 5 shows visualizations of the communication ma-
trix produced by mpiP for the 96-process LAMMPS run,
the patterns recognized by AChax in this matrix, and the
matrices produced by removing those patterns. To expose
detail that would be hidden if the blue saturation color map
of Figure 3 were used, this figure uses a heat map color
palette with “hotter” colors (e.g., yellow, orange) indicating
larger values and “cooler” colors (e.g., blue, purple) indi-
cating smaller values. Zero values in the communication
matrix are indicated using white blocks. As shown in the
figure, AChax recognized the 3D nearest neighbor commu-
nication pattern, including the correct dimensions of the 3D
Cartesion topology used. Because of the way mpiP models
MPI Scan and MPI Allreduce, AChax cannot distinguish
between these operations and MPI Bcast and MPI Reduce,
and has recognized the communication as the latter pair of
patterns. Lacking more information about how the MPI
library implements its rootless communication operations,
and having mpiP expose that information, the resulting pat-
terns reported by AChax are equivalent as far as their use-
fulness. We can express the LAMMPS communication be-

havior using the following expression, using the scale of each
recognized pattern as a coe�cient:

CLAMMPS = 13354 ·Broadcast(root : 0)+

700 ·Reduce(root : 0)+

19318888 · 3DNearestNeighbor(

dims : (4, 4, 6),

periodic : True)

The error in this expression, visualized as a communication
matrix, is shown in Figure 5d.
At first glance, the residual matrix produced by remov-

ing all recognized patterns (Figure 5d) makes it appear as if
AChax did not correctly determine the scale of the 3D near-
est neighbor pattern, because the residual pattern appears
to match the pure 3D nearest neighbor pattern. In fact,
AChax did recognize the scale correctly: after removing the
recognized pattern, there is a zero element (circled in the fig-
ure) in one of the diagonals that must be non-zero for a 3D
nearest neighbor pattern. The residual matrix produced by
AChax after removing recognized patterns provides the in-
teresting insight that not only does LAMMPS use a 3D near-
est neighbor communication pattern, the amount of data
LAMMPS communicates between neighbors varies. The col-
oration of Figure 5d indicates that for the input problem we
used, the LAMMPS nearest neighbor communication trans-
ferred more data in some dimensions than others. More
data was sent by process with rank i to its neighbors with
rank i± 1 (yellow blocks in the figure) than to its neighbors
along the next dimension (blue blocks in the figure), and
that more than to its neighbors along the final dimension
(purple blocks in the figure). Furthermore, the amount of
data sent by each proces to its neighbor along that third
dimension varies, as indicated by the fact that removing the
recognized pattern with its constant scale caused only one of
the would-be-purple blocks to have a zero value. If all pro-
cesses communicated the same amount along this dimension,
the resulting matrix would have no non-zeros in these diag-
onals, and the purple-colored blocks in Figure 5d would not
be there.

4.3 LULESH
The Livermore Unstructured Lagrangian Explicit Shock

Hydrodynamics application [13] (LULESH) is a proxy ap-
plication meant to approximate a typical hydrodynamics
model such as ALE3D [22]. LULESH is one of the appli-
cations being used for hardware/software co-design within
the U.S. Department of Energy’s Exascale Co-Design Cen-
ter for Materials in Extreme Environments [7]. Unlike a full
application, LULESH solves a specific, hard-coded problem.
We used LULESH version 2.0.3 [14]. This version is written
in C++ and can be built for serial execution or parallel ex-
ecution using MPI or MPI+OpenMP. We ran LULESH on
KIDS with 216 processes in a 6⇥ 6⇥ 6 3D process topology.
LULESH uses a limited number of MPI communication

operations: non-blocking point-to-point sends and receives,
and the reduce and allreduce collective operations. Never-
theless, LULESH exhibits interesting communication pat-
terns for AChax to characterize.
Figure 6 shows visualizations of the communication ma-

trix produced by mpiP for the 216-process LULESH run,
the patterns recognized by AChax in this matrix, and the
intermediate matrices produced by removing the recognized

•  Pilot	  implementa7on:	  Python-‐based	  using	  NumPy	  and	  SciPy	  matrix	  support	  
–  PaCern	  recognizers/generators	  are	  Python	  classes	  

•  Many-‐to-‐many,	  Broadcast,	  Reduce,	  2D	  Nearest	  Neighbor,	  3D	  Nearest	  Neighbor,	  3D	  Wavefront	  (sweep)	  from	  a	  corner,	  Random	  (generate	  
only)	  

•  Example:	  LAMMPS	  
–  Communica1on	  matrix	  collected	  using	  Oxbow’s	  mpiP	  for	  96-‐process	  LAMMPS	  run	  of	  EAM	  benchmark	  on	  Keeneland	  
Ini1al	  Delivery	  System	  

–  Basically	  a	  3D	  Nearest	  Neighbor	  paCern,	  but	  detected	  as	  imperfect	  (red	  circle	  in	  last	  figure)	  

Original	  matrix	   AEer	  removing	  broadcast	   AEer	  removing	  reduce	  

AEer	  removing	  3D	  
nearest	  neighbor,	  
dimensions	  (4,4,6),	  
periodic	  	  

Automated	  Characteriza1on	  of	  Message	  Passing	  Applica1on	  
Communica1on	  PaCerns	   Empirical	  Roofline	  Toolkit	  

Beyond the Textbook Roofline Model 
v Nominally, Roofline is a throughput-oriented (streaming) performance model on a single level of memory or cache. 

v In reality, architectures have multiple levels of memory and applications have hierarchical working sets. 

v Thus, reuse, bandwidth, and working set sizes are important metrics in understanding performance.  

v Expanded Roofline to capture performance on a two-level memory as a function of reuse and working set size… 
§  GPU performance is highly dependent on use of shared vs. cache (application writer must choose implementation on kernel by kernel basis). 
§  CPUs are much faster than GPUs in some regions… 

Initial ERT Release 
v Initial ERT release focused on characterizing and 

visualizing the Flop/DRAM Roofline on CPU architectures. 
§  Peak flops (using polynomial amenable to FMA instructions) 
§  Bandwidths and capacities for each level of memory and cache 

v Runs on… 
§  Xeon (Edison), Xeon Phi (Babbage), Opteron (Hopper), BlueGene/Q 

(Mira), Power7 and Power8 

v Proxy real-world applications… 
§  MPI+OpenMP implementation highlights any unintended NUMA issues. 
§  Compiled C code (can the compiler SIMDize?) 
§  Streaming (throughput-oriented) behavior with ample ILP, DLP, TLP 

v Roofline Visualization… 
§  Simple, portable Roofline chart viewer tool 
§  Eclipse integration 
§  Access to Roofline chart data stored in shared database 

 for(i=…){ 
  sum01=_mm_add_pd(sum01,…b[i  ]…); 

  sum23=_mm_add_pd(sum23,…b[i+2]…); 
  sum45=_mm_add_pd(sum45,…b[i+4]…); 

  sum67=_mm_add_pd(sum67,…b[i+6]…); 
 } 
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 for(i=…){ 
  sum0=_mm_add_sd(sum0,…b[i  ]…); 

  sum1=_mm_add_sd(sum1,…b[i+1]…); 
  sum2=_mm_add_sd(sum2,…b[i+2]…); 

  sum3=_mm_add_sd(sum3,…b[i+3]…); 
 } 

 for(i=…){ 
  sum0+=b[i  ]; 

  sum1+=b[i+1]; 
  sum2+=b[i+2]; 

  sum3+=b[i+3]; 
 } 
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v CUDA 6.5 now supports Unified Memory (treat 
device memory as OS-controlled page cache on 
CPU memory) 

v GPU Programmers must choose whether to… 
§  use Unified memory and let the OS control everything 
§  micromanage data allocation/movement/locality themselves 
§  use zero copy memory and keep everything on the host. 

v How does performance vary on Kepler GPUs 
(e.g. ORNL’s Titan and NERSC’s Dirac)? 
§  Zero copy memory performs very poorly (PCIe bandwidth 

on every access) and has no benefit from temporal locality. 
§  Page locked with explicit management works well for 

large working sets (>4MB) with high temporal locality 
(reuse 50x). 

§  Unified memory behaves like explicit management getting a 
benefit from temporal locality, but is 3x slower. 

§  It seems explicit management of data movement and 
locality is still required on Titan. 
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Performance	  API	  –	  PAPI	  
PAPI	  (Performance	  Applica1on	  Programming	  Interface)	  provides	  the	  tool	  designer	  
and	  applica1on	  engineer	  with	  a	  consistent	  interface	  and	  methodology	  for	  use	  of	  
the	  performance	  counter	  hardware	  found	  in	  most	  major	  microprocessors.	  In	  
addi1on,	  it	  provides	  access	  to	  a	  collec1on	  of	  components	  that	  expose	  
performance	  measurement	  opportuni1es	  across	  the	  hardware	  and	  so`ware.	  
stack.	  

Heike McCraw, Asim Yarkhan, 
Sangamesh Ragate 

University of Tennesee 

Shirley Moore 
University of Texas at El Paso 

Autoperf	  
v Simple	  tool	  for	  performance	  experiments	  and	  

associated	  analysis	  
v Adds	  a	  layer	  of	  abstrac1on	  over	  exis3ng	  

performance	  tools	  
v Automates	  tedious	  and	  error-‐prone	  tasks	  	  

•  Selec1ng	  performance	  counters	  (minimize	  #	  
of	  experiments	  required)	  

•  Using	  available	  measurement	  tools:	  PAPI,	  
TAU,	  HPCToolkit,	  Open|SpeedShop,...	  

•  Sefng	  up	  the	  environment	  for	  each	  tool,	  
managing	  sequen1al	  and	  batch	  parallel	  jobs	  
on	  different	  architectures	  

•  Genera1ng	  selec1ve	  profiling	  configura1on	  
based	  on	  sampling	  results	  

•  Configuring	  access	  to	  databases	  (e.g.	  
TAUdb),	  uploading	  data	  

•  Reusable	  and	  extensible	  analyses	  that	  are	  
easy	  to	  understand;	  comparisons	  across	  
mul1ple	  code	  versions	  

•  hCps://github.com/HPCL/autoperf.git	  	  
	  v Example:	  Studying	  the	  effects	  of	  op1miza1ons	  on	  a	  

Geant4	  applica1on	  (SimplifiedCalorimeter)	  compiled	  
gcc	  4.8	  (any	  two	  versions	  can	  be	  compared	  this	  way).	  

Stalls	  per	  instruc7on	  vs	  total	  
cycles:	  -‐O2	  unexpectedly	  
increases	  stalls	  per	  instruc1on	  
in	  two	  of	  the	  func1ons;	  each	  
circle’s	  diameter	  is	  propor1onal	  
to	  the	  corresponding	  func1on’s	  
frac1on	  of	  total	  execu1on	  1me.	  
The	  top	  5	  func1ons	  are	  labeled.	  
Other	  measurements	  presented	  
in	  a	  similar	  manner	  help	  
determine	  the	  cause	  of	  the	  
stalls.	  

-‐O2	  (green)	  	  vs.	  -‐O0	  (yellow)	  

-‐O3	  (green)	  	  vs.	  	  
-‐O0	  (yellow)	  

PAPI-‐NUMA	  
•  Experimental	  	  (not	  yet	  released)	  
•  Sampling	  support	  for	  cache	  and	  

memory	  events,	  including	  data	  
source,	  latency,	  etc.	  

•  Intended	  to	  provide	  a	  standard	  
interface	  to	  data	  needed	  for	  
NUMA	  performance	  analysis	  	  	  
and	  op1miza1on	  	  

SUPER	  
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