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Introduction

I Common Density Functional Theory (DFT) functionals do not in-
clude the non-local correlation effects that underlie van der Waals
(vdW) or dispersion interactions, leading to serious errors for weakly
bound systems.

I For systems with hydrogen bonds, the self-interaction error (SIE)
of DFT is sizeable and hybrid DFT functionals can be utilized to
alleviate this error.

I Here, we report a general-purpose self-consistent (SC) implemen-
tation of vdW-inclusive DFT functionals and discuss their effects on
the equilibrium properties of several systems.

Effects of SC vdW on electronic structure

I The long-range vdW energy (EvdW ) typically represents a tiny frac-
tion (∼0.001%) of the total energy; hence, its influence on electronic
properties are typically ignored.

I Utilizing SC vdW, we have found large effects on the electron den-
sity n(r) of molecular dimers, alkali-metal dimers, transition-metal
surfaces, and organic-metal interfaces [1].

I Methodology: modified Kohn-Sham effective potential [2].
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I vdW inclusive functionals are im-
plemented in FHI-AIMS [3] and
Quantum ESPRESSO (QE) [4].

Metal PBE PBE+vdWsurf
SC Expt.

Cu 4.89 4.95 4.94
Rh 5.26 5.55 5.60
Ag 4.44 4.74 4.74

Table 1: Work functions (in eV) of various
metal (111) surfaces obtained from
experiment and theory.

Figure 1: Integrated electron density
differences [∆n(r)] for the methane
(CH4) dimer separated by a C-C
distance of 6.72 Å along the z axis.

Role of vdW and anharmonicity on the equilibrium structures of
molecular crystals

Figure 2: Pyridine polymorphs and
pyridine-like molecular crystals (PLMCs)

I The pyridine molecule has a
dipole of 2.3 D (theory) and
2.2 D (experiment) in the gas
phase. We found that the molec-
ular crystal arrangement mini-
mizes the dipolar interaction en-
ergy.

I NpT dynamics captures anhar-
monicity and the SC vdW con-
tribution to the stress tensor has
been implemented in QE.

Figure 3: (a) PLMC structures from
AIMD at pexp and both T = 0 K and
T = Texp. (b) PLMC structures from
AIMD at pexp and Texp with and without
vdW. The inset shows an overlay of the
calculated equilibrium structure with the
experimental X-ray structure.

I The anharmonicity is large (with the PBE+vdWTS
SC pyridine volume at

T = 153 K ∼ 4% larger than at T = 0 K). Classical simulations
seem to be sufficient to capture the anharmonicity in this system.

Nuclear quantum effects in pyridine I

I Nuclear quantum effects (NQE) in pyridine I were investigated with
Path-Integral (PI-AIMD) using the QE + i-PI implementation [6].

Nuclei Volume Volume KE EKE
[Å3/molec] Error [eV/molec] [eV/molec]

Classical 110.4 -0.99% 0.22 –
Quantum 111.6 0.11% 1.19 0.97

Table 2: Equilibrium volumes and ionic kinetic energies (KE) from AIMD and PI-AIMD
at the experimental thermodynamic conditions. Colored-noise generalized Langevin
thermostats (with a Trotter dimension of 8) were used in all PI-AIMD simulations.

I The calculated equilibrium volume including NQE is very close to
the AIMD volume at pexp and Texp, in spite of the large excess ionic
kinetic energy (EKE).

I NQE are sizeable in the intramolecular motions but small in the
intermolecular motions; equilibrium volumes are primarily deter-
mined by intermolecular motions.

I To lowest-order in ~, NQE in the intermolec-
ular motions are equivalent to the addition
of a ∆T correction to the simulation tem-
perature T ,

∆T =
~~~2

36MT 2

〈∣∣∣~F ∣∣∣2〉 . (1)

Here, M is the mass of one pyridine
molecule and ~F is the force on its center
of mass.

T ∆T
Pyridine I 153 6.8
Pyridine II 293 5.5

Table 3: Quantum
temperature corrections
(∆T in Kelvin) using (1).

I The small magnitudes of ∆T reveal the quasi-classical character
of the intermolecular motions at Texp.

Ice triple point with PBE0+vdWTS
SC

Figure 4: Snapshots of ice Ih, II, and III at the
experimental triple point (0.21 GPa and 238 K).

I These large-scale NpT simulations were
made possible by the linear-scaling exact
exchange (EXX) and vdW algorithms im-
plemented in QE [7]. The implementation
uses analytical EXX stress tensors.

I Triple point properties calculated im-
proved systematically from PBE to
PBE+vdWTS

SC and to PBE0+vdWTS
SC.

Figure 5: Volume (∆V )
and enthalpy (∆H)
differences between the ice
phases at the triple point.

Conclusions

I In this work, we have provided a general-purpose implementation
of vdW-inclusive DFT functionals for variable-cell NpT AIMD simu-
lations and report their successful application to a wide variety of
systems of interest in biology, chemistry, and physics.
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