

Framework Implemented in GPM/SA code

Reference Implementation in Matlab, also C++ (GPMSA/Dakota/QUES) Utilities for cross-validation, sensitivity analysis, prediction win uncertainty

MCMC Sampling calibrates GPM/SA model and parameters:

$$\Sigma = \exp\{-\beta |x_1 - x_2|^p\}$$

$$\pi(\theta, \eta(\cdot, \cdot) | y(x)) \propto L(y(x) | \eta(x, \theta)) \times \pi(\theta) \times \pi(\eta(\cdot, \cdot))$$

$$L \approx \frac{1}{\sqrt{\det(\Sigma)}} \exp\{-\frac{1}{2}(Y - f) \cdot \Sigma^{-1}(Y - f)\}$$

Emulation, Calibration, and Prediction in NUCLEI

Quantifying Uncertainty with GPM/SA **Recent Work in QUEST Methods**

James Gattiker, Dave Higdon Sham Bhat, Earl Lawrence, Dave Osthus

Los Alamos, Statistical Sciences

	Hie	rarchical Lin	ked Calibration
	Challenges:Different observation types may have different implications to parar values and uncertaintyDifferent models may have different implications for an observation It's not realistic to expect discrepancy to be knownUpside: More observation groups/modes give more information about mode structural error and uncertainty.Inference model acknowledging bias terms for different observations: $y_i = \eta(x, \theta + b_i) + \delta_i(x, \theta + b_i) + \epsilon_i$		
	The distribution of the approach: $u_{i} = n(x, \theta_{i})$	b_i can be estimated $b_i + \delta_i (x, \theta_i) + \delta_i (x, \theta_i)$	ated by a hierarchical modeling $ heta_i \propto N(\mu_{ heta}, \sigma_{ heta}^2)$
inputs x ysical system θ	$g_i = \eta(x, v_i)$	$) + o_i(x, o_i) +$	\mathcal{L}_{i} $\mu_{\theta} \propto U(0,1)$ $\lambda_{\theta} \equiv \frac{1}{\sigma_{\theta}^{2}} \propto \Gamma(a=1,b \to \infty)$
o) th	Across the observations/models: One extreme: parameters are identical Other extreme: parameters are independent Generally, this reveals a source of additional uncertainty. Ocean Model Parameter Calibration:		
	Inference from re measures (in isol and consistent, c Conflicting infere	ed, green, blue ation) are strong ombine as black ences from cyan,	$ \begin{array}{c} $
	magenta measur not entirely ruled	es are weak, but dout.	
	Underlying issue Toy model $\ x=gt^2-kv^2t^2$ (falling object with drag)		
	If generating k=0 and simulation k=0 → Expected result	1000 900 800 700 600 500 400 300 - *	
nber) rt	If generating k≠0 simulation k=0 (model deficiency) → Biased <i>and</i> confident	$ \begin{array}{c} 200 \\ 100 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 100 \\ 0 \\ 100 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	
		0 1 2 3 4 5 6 7 8 9 10 time	Evidence of each obs.

