

SUNDIALS provides robust and efficient nonlinear solvers and time integrators for incorporation in large-scale scientific application codes

Overview of SUNDIALS

- Suite of time integrators and nonlinear solvers
 - ODE and DAE time integrators with forward and adjoint sensitivity capabilities, Newton-Krylov nonlinear solver
 - Written in C with interfaces to Fortran and Matlab
 - Designed to be incorporated into existing codes
- Modular implementation: users can supply own data structures
 - Vector structures core data structure for all the codes
 - Linear solvers / preconditioners
 - Supplied with serial, distributed (MPI) and shared memory parallel (OpenMP & Pthreads) structures
- Freely available (BSD license)
- Contains six packages:
- CVODE^{1,3}, CVODES^{2,4}, ARKode^{1,3}
- IDA^{1,3}, IDAS^{2,4}
- KINSOL^{3,4}

- ¹ Rootfinding capabilities
- ² Forward and adjoint sensitivity analysis capabilities
- ³ Fortran interfaces
- ⁴ Matlab interfaces

Time Integrators

ODE Integration

• CVODE(S) – variable order, variable step linear multistep methods

$$\dot{y} = f(t, y)$$
 $\sum_{j=0}^{K_1} \alpha_{n,j} y_{n-j} + \Delta t_n \sum_{j=0}^{K_2} \beta_{n,j} \dot{y}_{n-j} = 0$

• ARKode – variable step, additive Runge Kutta multistage methods

$$\begin{split} M\dot{y} &= f_E(t,y) + f_I(t,y) \\ Mz_i &= My_{n-1} + h_n \sum_{j=0}^{i-1} A_{i,j}^E f_E(t_{n-1} + c_j h_n, z_j) + h_n \sum_{j=0}^{i} A_{i,j}^I f_I(t_{n-1} + c_j h_n, z_j) \\ My_n &= My_{n-1} + h_n \sum_{i=0}^{s} b_i \left(f_E(t_{n-1} + c_i h_n, z_i) + f_I(t_{n-1} + c_i h_n, z_i) \right), \\ M\tilde{y}_n &= My_{n-1} + h_n \sum_{i=0}^{s} \tilde{b}_i \left(f_E(t_{n-1} + c_i h_n, z_i) + f_I(t_{n-1} + c_i h_n, z_i) \right). \end{split}$$

DAE Integration

• IDA(S) – variable order, variable step BDF (linear multistep) methods $F(t, \dot{y}, y) = 0$

$$y(t_0) = y_0$$

Scientific Discovery through Advanced Computing

BERKELEY LAP

SUNDIALS: SUite of Nonlinear and DIfferential-ALgebraic Solvers

SUNDIALS Team: Carol S. Woodward, Daniel R. Reynolds, Alan C. Hindmarsh, and Lawrence E. Banks

		Application Skeleton (CVODE, GMRES, page
		#include "cvode.h" #include "cvode_spgmr.h" #include "nvector_parallel.h"
ators		<pre> y = N_VNew_Parallel(comm, local_n, NEQ); // initialize v cvmem = CVodeCreate(CV_BDF,CV_NEWTON); // create CVODE flag = CVodeSet*(); // set solver of flag = CVodeInit(cvmem,rhs,t0,y,); // initialize s flag = CVSpgmr(cvmem,); // pick linear flag = CVSpilsSet*(cvmem,); // lin. solve of for(tout =) { // lin. solve of flag = CVode(cvmem,,y,); } NV Destroy(v): // free vector</pre>
5		CVodeFree(&cvmem); // free solver
		Application Impost
res: n		Application Impact
s, etc.		 Used worldwide in applications from research and industry Power grid modeling (RTE France, ISU) Simulation of clutches and power train parts (LuK GmbH & Co.) 3D parallel fusion (SMU, U. York, LLNL) Implicit hydrodynamics in core collapse supernovae (Stony Brook) Dislocation dynamics (LLNL) Sensitivity analysis of chemically reacting flows (Sandia) Large-scale subsurface flows (CO Mines, LLNL) Optimization in simulation of energy-producing algae (NREL) Micromagnetic simulations (U. Southampton) 3,500 downloads/year
		Future Plans
thods		 Enhanced support for accelerators/many-core vector keeps Incorporation of <i>communication-avoiding</i> linear solvers Native interface to HYPRE for linear solvers Expansion of SUNDIALS/PETSc interfaces beyond CVO Extension of ODE solvers to <i>multi-rate</i> problems (enable components with varving step size)
Make		https://computation.llnl.gov/ca
or conta	act C	arol S. Woodward, LLNL, woodward6@llnl.gov, 925-
	SMU	J. STONY BROOK UNIVERSITY BERKELEY

WISCONSIN UNIVERSITY OF WISCONSIN-MADISON