Excited State Absorption from Real-Time Time-Dependent

Density Functional Theory

Real-Time (RT) TDDFT

Real-time TDDFT in a Nutshell
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m Full response beyond perturbation limit

= Real-time, real-space = full dynamical information
m Insight into ultrafast and nonlinear processes

m High harmonic generation

m Valence, core, and now excited state excitations

m Compatible with all XC functionals in NWChem

Excited State Absorption

= QR-TDDFT
+ Excited state energies obtained from LR-TDDFT

+ Transition moments between excited states obtained from
second order residues of the QR function

+ Straightforward assignment of states

+ Can be cumbersome and costly for excited state absorption
spectrum of a large molecule

@ RT-TDDFT

+ Obtain excited state absorption spectrum by propagating
excited state density (linear response of excited state)

+ Excited state density obtained from LR-TDDFT gradients
calculation

+ Scales favorably with system size
 Assignment of states not straightforward
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= Non-stationary state

+ Due to approximations in exchange-correlation functional,

initial excited state is not stationary

# Can (mostly) account for non-stationary initial state by creating

a moving reference

+ Dipole moment with applied field referenced to simulation

without applied field
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= RT-TDHF/6-31G
+ HF is exact for one-electron case
+ Emission is natural part of approach

+ Different reference state leads to different transition
frequencies/intensities for inexact theories

RT-TDDFT vs QR-TDDFT
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(a) LRTDDET excitation

(b) RT-TDDFT emission

= Butadiene
¢ RT-TDHF and QR-TDHF give similar results

@ Transition density from RT-TDHF for negative feature
qualitatively agrees with transition density from LR-TDHF,
indicating emission in the RT-TDHF simulation
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m Oligofluorenes: B3LYP/6-31G

¢ RT-TDDFT shows slightly better performance than QR-
TDDFT relative to experiment
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Transient Absorption
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= Boron subphthalocyanine chloride
+ Transient absorption spectra

# Measurement from lab of Prof. David Blank, University of
Minnesota

= Simulation
# B3LYP/6-31G* optimized ground state geometry
+ RT-TDDFT with BHLYP/6-31G*

+ Simulated transient spectrum obtained from subtracting the
ground state spectrum from the excited state spectrum
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