
Resilience Assessment and Enhancement
George Bosilca,
Thomas Herault

University of Tennesse

Ganesh Gopalakrishnan
Univ. of Utah

Saurabh Hukerikar,
Pedro Diniz, Bob Lucas

USC-ISI

(Partial) support for this work was provided through Scientific Discovery through
Advanced Computing (SciDAC) program funded by U.S. Department of Energy,
Office of Science, Advanced Scientific Computing Research (and Basic Energy
Sciences/Biological and Environmental Research/High Energy Physics/Fusion
Energy Sciences/Nuclear Physics). LLNL-POST-657319.

(Partial) support for this work was provided through Scientific Discovery
through Advanced Computing (SciDAC) program funded by U.S.
Department of Energy, Office of Science, Advanced Scientific Computing
Research (and Basic Energy Sciences/Biological and Environmental
Research/High Energy Physics/Fusion Energy Sciences/Nuclear
Physics) under award numbers DE-SC0006844 and DESC0006947.

Abstract	

I/O	 Aware	 Power	 Shi3ing	

Algorithm-‐
level	

Solu0ons	

System-‐
level	

Solu0ons	

Error	

Detec0on	

Error	
Recovery	 /	
Correc0on	

Code-‐level	

Solu0ons	

Programming	 Model	 for	 Resilience	

 Amelioration of Errors in Data Structures
•  re-initialization of key variable and either roll-back or roll-forward
•  user-provided amelioration function
•  redundant information in the form of checksums for matrices

Error	 Detector	 Synthesis	

#pragma resilience recover-rollback
reinitialize (variable_list) {!
 <code block>!
}!

We are addressing the problems in software resilience
with a holistic multifaceted approach that spans across
software levels. One approach emphasizes tracking
expected control flows or data invariants, and is aimed
at detecting silent data corruption. Another explores
language extensions and compiler technology to convey
to compilers and run-time system resilience properties of
code sections and algorithms. Additionally, we are
investigating specific algorithmic properties of
applications to develop fault tolerant extensions to dense
and sparse methods. At the highest levels, we detect
silent-data corruptions by replicating and comparing
values across MPI processes and improve on the state
of the art for checkpoint/restart with innovations in file
systems and checkpoint compression.

Chunhua Liao, Bronis R. de Supinski,
Todd Gamblin, Kathryn Mohror, Dan Quinlan

Lawrence Livermore Natl. Lab.

#pragma resilience recover-rollforward
reinitialize (variable_list) {!
 <code block>!
}!

#pragma resilience recover-rollback
ameliorate (recovery_func) {!
 <code block>!
}!

#pragma resilience recover-rollforward
ameliorate (recovery_func) {!
 <code block>!
}!

void *resilience_malloc_repairable (...,
(void)(heal_func())*);!

heal(recovery_func()) float* matrix[N][N];!

•  association of amelioration function at allocation

 Experiments
•  Sequential Executions
•  Accelerated Fault Injections

•  Errors in text and code segments
•  1 fault every 15/10/5/2/1 mins.
•  Long application runs: 20 mins. Min.

Codes:
•  Matrix-Matrix Multiplication – uses row and column checksums

for operand matrices A and B and the resilient malloc directive;
•  Conjugate Gradient Solver – uses checksum in matrix A and

protecting CG iterations steps with roll-forward using the checksum
to validate correctness of the operand matrix;

•  Self-Stabilizing Conjugate Gradient – protects iteration step
using roll-backward and user-provided stability function for
amelioration.

Resilient	 Task-‐based	 Run-‐Time	

Robert J. Fowler
Anirban Mandal

RENCI

Modeling	 and	 OpDmizaDon	 Resilient	 Workflows	

!  I/O power has a significant impact on tradeoffs
!  Increases in power for computation increases energy consumption, but yields

minor tradeoffs
!  Power for computation should be significantly less than that for checkpointing in

order for richer tradeoffs to exist
!  Analysis of the tradeoffs between energy and run time for multilevel checkpointing.

Balaprakash, Gomez, Bouguerra, Wild, Cappello, and Hovland. PMBS 2014.
!  Energy-performance tradeoffs in multilevel checkpoint strategies. Balaprakash,

Gomez, Bouguerra, Wild, Cappello, and Hovland. Cluster 2014.

Conclusions	

•  Develop analytical models for both
expected run time and energy consumption
for multilevel FTI checkpointing schemes
under generic error rates

•  Characterize the Pareto-optimal solution set
based on varying checkpoint frequency and
investigate the tradeoffs between expected
time and energy consumption

•  Perform power consumption measurements
of large-scale executions on an IBM Blue
Gene/Q with several applications

•  Experimental study to analyze several
system-level parameters (such as I/O
power) for multilevel checkpointing that can
potentially impact the tradeoffs

time (energy) for a failure-free
execution of an application

+
expected time (energy)

wasted due to failures and
checkpointing

(copy, rework,
restart, downtime)

Impact	 of	 C/R	 power	 Impact	 of	 I/O	 power	

Objec.ves	 Analy.cal	 Modeling	

Prasanna Balaprakash,
Paul Hovland, Stefan Wild,

Argonne Natl. Lab.

Objec.ves	
•  An increasing fraction of high-end workloads are

(dynamic) ensembles of workflows, e.g. UQ
campaigns

•  Failures occur across hardware, software, and
application/model layers

•  These workloads must be run autonomously in
unreliable environments

•  Capacity runs need orchestration to “run past faults”
•  Many need to be co-located in high-end centers

because of data communication requirements.
•  Autonomous management of computational

campaigns
•  Develop support for multi-domain, network-aware

policies for data-movement when ensemble and
workflow members cross domain boundaries

Approach	
•  Ensemble management using

glideins
•  Create tool for SLURM to create,

delete, and modify glideIns of pre-
defined types

•  GlideIns should be transparently
resilient to node failures by
leveraging and extending health-
check plugins

•  Capability to extend glideIns to
virtual networked environments (out-
bursting) and vice versa (in-bursting)
for seamless data movement

SLURM

SLURM handler scripts (create, delete,
modify glideins)

Node Health
Check

Glidein
monitor

and
modify

Cluster Compute
Fabric

Other SLURM
plugins

Glidein Service

Client

ORCA/
NIaaS

Internet2ESNet

SLURM managed
cluster / supercomputer

User slice contains virtual resources
and SLURM allocations on-demand

Cluster ORCA AM ESnet AM Internet2 AMRack AM Rack AM

Rack A with VM + storage Rack B with VM + storage

ExoGENI/ORCA Slice Manager

Applica.on	 Engagement	
•  Engaging with DAKOTA toolkit (Sandia Labs)
•  Studied different parallelism use cases for the

DAKOTA toolkit for running ensembles
•  Did preliminary performance analysis of the

DAKOTA toolkit
•  Resilient glideIns to be integrated with the “Job

tiling” parallel use case using SLURM

SLURM	 glideIns	

Cross-‐domain	

Autonomous	 search	 to	
evaluate	 materials	 for	
solar	 fuels	 (abinit)	

85.4%	 86.6%	 85.2%	 88.6%	 87.0%	 90.2%	 86.2%	

32.4%	 32.1%	 33.7%	 32.5%	

54.1%	

72.9%	

94.4%	

0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	
100%	

f1	 f2	 f3	 f4	 f5	 f6	 f7	
Feature	 Vectors	

Error	 DetecDon	 Rate	 Performance	 Overhead	

Dme	 step	 t	 Dme	 step	 t+1	

So3	 Error	

So3-‐error	 PropagaDon	 in	 25-‐point	 RTM	 Stencil	

Automated	 Error	 Detector	 Synthesis	 via	 Machine	 Learning	
•  Protect stencil computations against soft errors
•  Stencil based computations have high arithmetic intensity
•  Target PDE solvers using stencil based computations
•  Main memory and data cache often protected using ECC
•  Focus on soft errors affecting CPU registers and its ALU
•  Key idea is to use a variant of software level DMR
•  Use approximate function for redundant computing
•  Approximate function derived using machine learning

Stencil	 	
Kernel	

Approximate	
FuncDon	

>	 τ	 Error	
Detected	

Yes	

Outcome,	 Tools:	
•  Ideas implemented and

released in tool Sorrel
www.cs.utah.edu/fv/FMR

•  Found effective at trapping
soft errors

•  Overhead mitigation
techniques being studied

Background
•  Future HPC systems will likely be power constrained.
•  Many applications include periodic, low-power I/O phases.
•  Thus, applications may be power limited during computation phases but

have extra power during I/O phases.
•  This extra power can be reallocated to other applications to improve

performance.
•  The performance improvement will be greatest if we minimize overlap

between I/O phases of different applications.

Algorithms
•  Stagger: attempt to avoid overlap of I/O phases by delaying some

applications by a small amount.
•  Control: I/O phase times are controlled centrally. I/O phase overlap is

reduced by allowing some applications to perform extra computation
iterations before entering an I/O phase.

•  Spread: No attempt is made to prevent I/O phase overlap; instead,
power is shifted on a best-effort basis.

Results
•  Performance improvements range from 2% when I/O phases

take 10% of execution time to 8% when I/O phases take 50% of
execution time.

•  No applications experience performance degradation.

with contributions from:
Greg Bronevetsky (Google Inc.)

David Lowenthal
The University of Arizona

PaRSEC:	 generic	 run0me	 for	
architecture-‐aware	 scheduling	
of	 micro-‐tasks	 on	 distributed	
many-‐core	 heterogeneous	
architectures	 Co

nc
ep

ts
	 •  Clear	 separa0on	 of	 concerns:	 compiler	 op0mize	 each	 tasks,	

developer	 describe	 dependencies	 between	 tasks,	 the	
run0me	 orchestrate	 the	 dynamic	 execu0on	

•  Interface	 with	 the	 applica0on	 developers	 through	
specialized	 Domain	 Specific	 Languages	 (PTG,	 insert_task,	
fork/join,	 …)	

•  Separate	 algorithms	 from	 data	 distribu0on	
•  Expose	 maximal	 parallelism	 by	 minimizing	 the	 control	 flow	

Ru
n0

m
e	

•  Permeable	 portability	 layer	 for	 heterogeneous	 architectures	
•  Scheduling	 policies	 adapt	 every	 execu0on	 to	 the	 hardware	

&	 ongoing	 system	 status	
•  Data	 movements	 between	 consumers	 are	 inferred	 from	

dependencies.	 Communica0ons/computa0ons	 overlap	
naturally	 unfold	

•  Coherency	 protocols	 minimize	 data	 movements	
•  Memory	 hierarchies	 (including	 NVRAM	 and	 disk)	 integral	

part	 of	 the	 scheduling	 decisions	

Re
si
lie
nc
e	

•  Data	 versioning,	 copy-‐on-‐write,	 data	 logging	 tracks	 changes	
applied	 on	 the	 data.	

•  Variable	 interval	 data	 logging	 (snapshot)	 based	 on	 algorithm	
proper0es,	 accepted	 overhead,	 amount	 of	 extra	 memory,	
and	 hardware	 MTBF.	

•  Whenever	 a	 task	 fails	 the	 valida0on	 stage,	 or	 the	 OS	 inform	
the	 run0me	 about	 unrecoverable	 memory	 corrup0ons,	 the	
run0me	 can	 automa0cally	 build	 a	 minimum	 spanning	
recovery	 DAG	 composed	 of	 all	 paths	 from	 snapshot	 data	 to	
the	 failed	 task.	

•  The	 recovery	 DAG	 is	 then	 executed	 in	 parallel	 with	 original	
applica0on	 DAG,	 minimizing	 the	 overhead	

•  Snapshot	 based	 methods	 are	 generic	 and	 provided	
automa0cally	 by	 the	 run0me.	 ABFT	 methods	 require	 data	
validators	 provided	 by	 the	 algorithm	 developer	

•  Applica0on	 developed	 on	 PaRSEC	 are	 resilient.	

Algorithm	 Based	 Fault	 Tolerance	 checksums	 are	 used	 to	
maintain	 consistently	 valid	 data	 during	 the	 execu0on.	 	

Node0

Node1

Node2

Node3

PO

GE

TR

SYTR TR

PO GE GE

TR TR

SYSY GE

PO

TR

SY

PO

SY SY

Data Snapshot

Reexecution

Soft error

detection

Consistent

data state

Instead	 of	 ABFT-‐based	 recovery,	 the	 run0me	 keeps	 copies	
of	 older	 versions	 of	 the	 data	 in	 order	 to	 minimize	 the	 need	
for	 re-‐execu0on	 (checkpoint	 interval	 once	 every	 10	
updates).	

