
Resilience Assessment and Enhancement 
George Bosilca, 
Thomas Herault 

University of Tennesse 

Ganesh Gopalakrishnan 
Univ. of Utah 

Saurabh Hukerikar, 
Pedro Diniz, Bob Lucas 

USC-ISI 

(Partial) support for this work was provided through Scientific Discovery through 
Advanced Computing (SciDAC) program funded by U.S. Department of Energy, 
Office of Science, Advanced Scientific Computing Research (and Basic Energy 
Sciences/Biological and Environmental Research/High Energy Physics/Fusion 
Energy Sciences/Nuclear Physics). LLNL-POST-657319. 

(Partial) support for this work was provided through Scientific Discovery 
through Advanced Computing (SciDAC) program funded by U.S. 
Department of Energy, Office of Science, Advanced Scientific Computing 
Research (and Basic Energy Sciences/Biological and Environmental 
Research/High Energy Physics/Fusion Energy Sciences/Nuclear 
Physics) under award numbers    DE-SC0006844 and DESC0006947. 

Abstract	
  

I/O	
  Aware	
  Power	
  Shi3ing	
  

Algorithm-­‐
level	
  

Solu0ons	
  

System-­‐
level	
  

Solu0ons	
  

Error	
  

Detec0on	
  

Error	
  
Recovery	
  /	
  
Correc0on	
  

Code-­‐level	
  

Solu0ons	
  

Programming	
  Model	
  for	
  Resilience	
  

 Amelioration of Errors in Data Structures 
•  re-initialization of key variable and either roll-back or roll-forward 
•  user-provided amelioration function 
•  redundant information in the form of checksums for matrices 

Error	
  Detector	
  Synthesis	
  

#pragma resilience recover-rollback 
reinitialize (variable_list) {!
  <code block>!
}!

We are addressing the problems in software resilience 
with a holistic multifaceted approach that spans across 
software levels. One approach emphasizes tracking 
expected control flows or data invariants, and is aimed 
at detecting silent data corruption. Another explores 
language extensions and compiler technology to convey 
to compilers and run-time system resilience properties of 
code sections and algorithms. Additionally, we are 
investigating specific algorithmic properties of 
applications to develop fault tolerant extensions to dense 
and sparse methods. At the highest levels, we detect 
silent-data corruptions by replicating and comparing 
values across MPI processes and improve on the state 
of the art for checkpoint/restart with innovations in file 
systems and checkpoint compression. 
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#pragma resilience recover-rollforward 
reinitialize (variable_list) {!
  <code block>!
}!

#pragma resilience recover-rollback 
ameliorate (recovery_func) {!
  <code block>!
}!

#pragma resilience recover-rollforward 
ameliorate (recovery_func) {!
  <code block>!
}!

void *resilience_malloc_repairable (..., 
(void)(heal_func())*);!

heal(recovery_func()) float* matrix[N][N];!

•  association of amelioration function at allocation 

 Experiments 
•  Sequential Executions 
•  Accelerated Fault Injections 

•  Errors in text and code segments 
•  1 fault every 15/10/5/2/1 mins. 
•  Long application runs: 20 mins. Min. 

Codes: 
•  Matrix-Matrix Multiplication – uses row and column checksums 

for operand matrices A and B and the resilient malloc directive; 
•  Conjugate Gradient Solver – uses checksum in matrix A and 

protecting CG iterations steps with roll-forward using the checksum 
to validate correctness of the operand matrix; 

•  Self-Stabilizing Conjugate Gradient – protects iteration step 
using roll-backward and user-provided stability function for 
amelioration. 
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!  I/O power has a significant impact on tradeoffs  
!  Increases in power for computation increases energy consumption, but yields 

minor tradeoffs  
!  Power for computation should be significantly less than that for checkpointing in 

order for richer tradeoffs to exist 
!  Analysis of the tradeoffs between energy and run time for multilevel checkpointing. 

Balaprakash, Gomez, Bouguerra, Wild, Cappello, and Hovland. PMBS 2014. 
!  Energy-performance tradeoffs in multilevel checkpoint strategies. Balaprakash, 

Gomez, Bouguerra, Wild, Cappello, and Hovland. Cluster 2014. 

Conclusions	
  

•  Develop analytical models for  both 
expected run time and energy consumption 
for multilevel FTI checkpointing schemes 
under generic error rates 

•  Characterize the Pareto-optimal solution set 
based on varying checkpoint frequency and 
investigate the tradeoffs between expected 
time and energy consumption 

•  Perform power consumption measurements 
of large-scale executions on an IBM Blue 
Gene/Q with several applications 

•  Experimental study to analyze several 
system-level parameters  (such as I/O 
power) for multilevel checkpointing that can 
potentially impact the tradeoffs 

time (energy) for a failure-free 
execution of an application  

+ 
expected time (energy) 

wasted due to failures and 
checkpointing  

(copy, rework, 
restart, downtime) 
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Objec.ves	
  
•  An increasing fraction of high-end workloads are 

(dynamic) ensembles of workflows, e.g. UQ 
campaigns 

•  Failures occur across hardware, software, and 
application/model layers 

•  These workloads must be run autonomously in 
unreliable environments 

•  Capacity runs need orchestration to “run past faults” 
•  Many need to be co-located in high-end centers 

because of data communication requirements.  
•  Autonomous management of computational 

campaigns 
•  Develop support for multi-domain, network-aware 

policies for data-movement when ensemble and 
workflow members cross domain boundaries 

Approach	
  
•  Ensemble management using 

glideins 
•  Create tool for SLURM to create, 

delete, and modify glideIns of pre-
defined types 

•  GlideIns should be transparently 
resilient to node failures by 
leveraging and extending health-
check plugins 

•  Capability to extend glideIns to 
virtual networked environments (out-
bursting) and vice versa (in-bursting) 
for seamless data movement 

SLURM

SLURM handler scripts (create, delete, 
modify glideins)
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Applica.on	
  Engagement	
  
•  Engaging with DAKOTA toolkit (Sandia Labs) 
•  Studied different parallelism use cases for the 

DAKOTA toolkit for running ensembles 
•  Did preliminary performance analysis of the 

DAKOTA toolkit 
•  Resilient glideIns to be integrated with the “Job 

tiling” parallel use case using SLURM 
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Cross-­‐domain	
  

Autonomous	
  search	
  to	
  
evaluate	
  materials	
  for	
  
solar	
  fuels	
  (abinit)	
  

85.4%	
   86.6%	
   85.2%	
   88.6%	
   87.0%	
   90.2%	
   86.2%	
  

32.4%	
   32.1%	
   33.7%	
   32.5%	
  

54.1%	
  

72.9%	
  

94.4%	
  

0%	
  
10%	
  
20%	
  
30%	
  
40%	
  
50%	
  
60%	
  
70%	
  
80%	
  
90%	
  
100%	
  

f1	
   f2	
   f3	
   f4	
   f5	
   f6	
   f7	
  
Feature	
  Vectors	
  

Error	
  DetecDon	
  Rate	
   Performance	
  Overhead	
  

Dme	
  step	
  t	
   Dme	
  step	
  t+1	
  

So3	
  Error	
  

So3-­‐error	
  PropagaDon	
  in	
  25-­‐point	
  RTM	
  Stencil	
  

Automated	
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•  Protect stencil computations against soft errors 
•  Stencil based computations have high arithmetic intensity 
•  Target PDE solvers using stencil based computations 
•  Main memory and data cache often protected using ECC 
•  Focus on soft errors affecting CPU registers and its ALU 
•  Key idea is to use a variant of software level DMR 
•  Use approximate function for redundant computing 
•  Approximate function derived using machine learning 
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Outcome,	
  Tools:	
  
•  Ideas implemented and 

released in tool Sorrel 
www.cs.utah.edu/fv/FMR 

•  Found effective at trapping 
soft errors 

•  Overhead mitigation 
techniques being studied 

Background 
•  Future HPC systems will likely be power constrained. 
•  Many applications include periodic, low-power  I/O phases. 
•  Thus, applications may be power limited during computation phases but 

have extra power during I/O phases. 
•  This extra power can be reallocated to other applications to improve 

performance. 
•  The performance improvement will be greatest if we minimize overlap 

between I/O phases of different applications. 

Algorithms 
•  Stagger: attempt to avoid overlap of I/O phases by delaying some 

applications by a small amount. 
•  Control: I/O phase times are controlled centrally.  I/O phase overlap is 

reduced by allowing some applications to perform extra computation 
iterations before entering an I/O phase. 

•  Spread: No attempt is made to prevent I/O phase overlap; instead, 
power is shifted on a best-effort basis. 

Results 
•  Performance improvements range from 2% when I/O phases 

take 10% of execution time to 8% when I/O phases take 50% of 
execution time. 

•  No applications experience performance degradation. 
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   •  Clear	
  separa0on	
  of	
  concerns:	
  compiler	
  op0mize	
  each	
  tasks,	
  

developer	
  describe	
  dependencies	
  between	
  tasks,	
  the	
  
run0me	
  orchestrate	
  the	
  dynamic	
  execu0on	
  

•  Interface	
  with	
  the	
  applica0on	
  developers	
  through	
  
specialized	
  Domain	
  Specific	
  Languages	
  (PTG,	
  insert_task,	
  
fork/join,	
  …)	
  

•  Separate	
  algorithms	
  from	
  data	
  distribu0on	
  
•  Expose	
  maximal	
  parallelism	
  by	
  minimizing	
  the	
  control	
  flow	
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•  Permeable	
  portability	
  layer	
  for	
  heterogeneous	
  architectures	
  
•  Scheduling	
  policies	
  adapt	
  every	
  execu0on	
  to	
  the	
  hardware	
  

&	
  ongoing	
  system	
  status	
  
•  Data	
  movements	
  between	
  consumers	
  are	
  inferred	
  from	
  

dependencies.	
  Communica0ons/computa0ons	
  overlap	
  
naturally	
  unfold	
  

•  Coherency	
  protocols	
  minimize	
  data	
  movements	
  
•  Memory	
  hierarchies	
  (including	
  NVRAM	
  and	
  disk)	
  integral	
  

part	
  of	
  the	
  scheduling	
  decisions	
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•  Data	
  versioning,	
  copy-­‐on-­‐write,	
  data	
  logging	
  tracks	
  changes	
  
applied	
  on	
  the	
  data.	
  

•  Variable	
  interval	
  data	
  logging	
  (snapshot)	
  based	
  on	
  algorithm	
  
proper0es,	
  accepted	
  overhead,	
  amount	
  of	
  extra	
  memory,	
  
and	
  hardware	
  MTBF.	
  

•  Whenever	
  a	
  task	
  fails	
  the	
  valida0on	
  stage,	
  or	
  the	
  OS	
  inform	
  
the	
  run0me	
  about	
  unrecoverable	
  memory	
  corrup0ons,	
  the	
  
run0me	
  can	
  automa0cally	
  build	
  a	
  minimum	
  spanning	
  
recovery	
  DAG	
  composed	
  of	
  all	
  paths	
  from	
  snapshot	
  data	
  to	
  
the	
  failed	
  task.	
  

•  The	
  recovery	
  DAG	
  is	
  then	
  executed	
  in	
  parallel	
  with	
  original	
  
applica0on	
  DAG,	
  minimizing	
  the	
  overhead	
  

•  Snapshot	
  based	
  methods	
  are	
  generic	
  and	
  provided	
  
automa0cally	
  by	
  the	
  run0me.	
  ABFT	
  methods	
  require	
  data	
  
validators	
  provided	
  by	
  the	
  algorithm	
  developer	
  

•  Applica0on	
  developed	
  on	
  PaRSEC	
  are	
  resilient.	
  

Algorithm	
  Based	
  Fault	
  Tolerance	
  checksums	
  are	
  used	
  to	
  
maintain	
  consistently	
  valid	
  data	
  during	
  the	
  execu0on.	
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Instead	
  of	
  ABFT-­‐based	
  recovery,	
  the	
  run0me	
  keeps	
  copies	
  
of	
  older	
  versions	
  of	
  the	
  data	
  in	
  order	
  to	
  minimize	
  the	
  need	
  
for	
  re-­‐execu0on	
  (checkpoint	
  interval	
  once	
  every	
  10	
  
updates).	
  


