
Resilience Assessment and Enhancement
George Bosilca,
Thomas Herault

University of Tennesse

Ganesh Gopalakrishnan
Univ. of Utah

Saurabh Hukerikar,
Pedro Diniz, Bob Lucas

USC-ISI

(Partial) support for this work was provided through Scientific Discovery through
Advanced Computing (SciDAC) program funded by U.S. Department of Energy,
Office of Science, Advanced Scientific Computing Research (and Basic Energy
Sciences/Biological and Environmental Research/High Energy Physics/Fusion
Energy Sciences/Nuclear Physics). LLNL-POST-657319.

(Partial) support for this work was provided through Scientific Discovery
through Advanced Computing (SciDAC) program funded by U.S.
Department of Energy, Office of Science, Advanced Scientific Computing
Research (and Basic Energy Sciences/Biological and Environmental
Research/High Energy Physics/Fusion Energy Sciences/Nuclear
Physics) under award numbers DE-SC0006844 and DESC0006947.

Abstract	

I/O	
 Aware	
 Power	
 Shi3ing	

Algorithm-­‐
level	

Solu0ons	

System-­‐
level	

Solu0ons	

Error	

Detec0on	

Error	

Recovery	
 /	

Correc0on	

Code-­‐level	

Solu0ons	

Programming	
 Model	
 for	
 Resilience	

 Amelioration of Errors in Data Structures
•  re-initialization of key variable and either roll-back or roll-forward
•  user-provided amelioration function
•  redundant information in the form of checksums for matrices

Error	
 Detector	
 Synthesis	

#pragma resilience recover-rollback
reinitialize (variable_list) {!
 <code block>!
}!

We are addressing the problems in software resilience
with a holistic multifaceted approach that spans across
software levels. One approach emphasizes tracking
expected control flows or data invariants, and is aimed
at detecting silent data corruption. Another explores
language extensions and compiler technology to convey
to compilers and run-time system resilience properties of
code sections and algorithms. Additionally, we are
investigating specific algorithmic properties of
applications to develop fault tolerant extensions to dense
and sparse methods. At the highest levels, we detect
silent-data corruptions by replicating and comparing
values across MPI processes and improve on the state
of the art for checkpoint/restart with innovations in file
systems and checkpoint compression.

Chunhua Liao, Bronis R. de Supinski,
Todd Gamblin, Kathryn Mohror, Dan Quinlan

Lawrence Livermore Natl. Lab.

#pragma resilience recover-rollforward
reinitialize (variable_list) {!
 <code block>!
}!

#pragma resilience recover-rollback
ameliorate (recovery_func) {!
 <code block>!
}!

#pragma resilience recover-rollforward
ameliorate (recovery_func) {!
 <code block>!
}!

void *resilience_malloc_repairable (...,
(void)(heal_func())*);!

heal(recovery_func()) float* matrix[N][N];!

•  association of amelioration function at allocation

 Experiments
•  Sequential Executions
•  Accelerated Fault Injections

•  Errors in text and code segments
•  1 fault every 15/10/5/2/1 mins.
•  Long application runs: 20 mins. Min.

Codes:
•  Matrix-Matrix Multiplication – uses row and column checksums

for operand matrices A and B and the resilient malloc directive;
•  Conjugate Gradient Solver – uses checksum in matrix A and

protecting CG iterations steps with roll-forward using the checksum
to validate correctness of the operand matrix;

•  Self-Stabilizing Conjugate Gradient – protects iteration step
using roll-backward and user-provided stability function for
amelioration.

Resilient	
 Task-­‐based	
 Run-­‐Time	

Robert J. Fowler
Anirban Mandal

RENCI

Modeling	
 and	
 OpDmizaDon	
 Resilient	
 Workflows	

!  I/O power has a significant impact on tradeoffs
!  Increases in power for computation increases energy consumption, but yields

minor tradeoffs
!  Power for computation should be significantly less than that for checkpointing in

order for richer tradeoffs to exist
!  Analysis of the tradeoffs between energy and run time for multilevel checkpointing.

Balaprakash, Gomez, Bouguerra, Wild, Cappello, and Hovland. PMBS 2014.
!  Energy-performance tradeoffs in multilevel checkpoint strategies. Balaprakash,

Gomez, Bouguerra, Wild, Cappello, and Hovland. Cluster 2014.

Conclusions	

•  Develop analytical models for both
expected run time and energy consumption
for multilevel FTI checkpointing schemes
under generic error rates

•  Characterize the Pareto-optimal solution set
based on varying checkpoint frequency and
investigate the tradeoffs between expected
time and energy consumption

•  Perform power consumption measurements
of large-scale executions on an IBM Blue
Gene/Q with several applications

•  Experimental study to analyze several
system-level parameters (such as I/O
power) for multilevel checkpointing that can
potentially impact the tradeoffs

time (energy) for a failure-free
execution of an application

+
expected time (energy)

wasted due to failures and
checkpointing

(copy, rework,
restart, downtime)

Impact	
 of	
 C/R	
 power	
 Impact	
 of	
 I/O	
 power	

Objec.ves	
 Analy.cal	
 Modeling	

Prasanna Balaprakash,
Paul Hovland, Stefan Wild,

Argonne Natl. Lab.

Objec.ves	

•  An increasing fraction of high-end workloads are

(dynamic) ensembles of workflows, e.g. UQ
campaigns

•  Failures occur across hardware, software, and
application/model layers

•  These workloads must be run autonomously in
unreliable environments

•  Capacity runs need orchestration to “run past faults”
•  Many need to be co-located in high-end centers

because of data communication requirements.
•  Autonomous management of computational

campaigns
•  Develop support for multi-domain, network-aware

policies for data-movement when ensemble and
workflow members cross domain boundaries

Approach	

•  Ensemble management using

glideins
•  Create tool for SLURM to create,

delete, and modify glideIns of pre-
defined types

•  GlideIns should be transparently
resilient to node failures by
leveraging and extending health-
check plugins

•  Capability to extend glideIns to
virtual networked environments (out-
bursting) and vice versa (in-bursting)
for seamless data movement

SLURM

SLURM handler scripts (create, delete,
modify glideins)

Node Health
Check

Glidein
monitor

and
modify

Cluster Compute
Fabric

Other SLURM
plugins

Glidein Service

Client

ORCA/
NIaaS

Internet2ESNet

SLURM managed
cluster / supercomputer

User slice contains virtual resources
and SLURM allocations on-demand

Cluster ORCA AM ESnet AM Internet2 AMRack AM Rack AM

Rack A with VM + storage Rack B with VM + storage

ExoGENI/ORCA Slice Manager

Applica.on	
 Engagement	

•  Engaging with DAKOTA toolkit (Sandia Labs)
•  Studied different parallelism use cases for the

DAKOTA toolkit for running ensembles
•  Did preliminary performance analysis of the

DAKOTA toolkit
•  Resilient glideIns to be integrated with the “Job

tiling” parallel use case using SLURM

SLURM	
 glideIns	

Cross-­‐domain	

Autonomous	
 search	
 to	

evaluate	
 materials	
 for	

solar	
 fuels	
 (abinit)	

85.4%	
 86.6%	
 85.2%	
 88.6%	
 87.0%	
 90.2%	
 86.2%	

32.4%	
 32.1%	
 33.7%	
 32.5%	

54.1%	

72.9%	

94.4%	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

f1	
 f2	
 f3	
 f4	
 f5	
 f6	
 f7	

Feature	
 Vectors	

Error	
 DetecDon	
 Rate	
 Performance	
 Overhead	

Dme	
 step	
 t	
 Dme	
 step	
 t+1	

So3	
 Error	

So3-­‐error	
 PropagaDon	
 in	
 25-­‐point	
 RTM	
 Stencil	

Automated	
 Error	
 Detector	
 Synthesis	
 via	
 Machine	
 Learning	

•  Protect stencil computations against soft errors
•  Stencil based computations have high arithmetic intensity
•  Target PDE solvers using stencil based computations
•  Main memory and data cache often protected using ECC
•  Focus on soft errors affecting CPU registers and its ALU
•  Key idea is to use a variant of software level DMR
•  Use approximate function for redundant computing
•  Approximate function derived using machine learning

Stencil	
 	

Kernel	

Approximate	

FuncDon	

>	
 τ	
 Error	

Detected	

Yes	

Outcome,	
 Tools:	

•  Ideas implemented and

released in tool Sorrel
www.cs.utah.edu/fv/FMR

•  Found effective at trapping
soft errors

•  Overhead mitigation
techniques being studied

Background
•  Future HPC systems will likely be power constrained.
•  Many applications include periodic, low-power I/O phases.
•  Thus, applications may be power limited during computation phases but

have extra power during I/O phases.
•  This extra power can be reallocated to other applications to improve

performance.
•  The performance improvement will be greatest if we minimize overlap

between I/O phases of different applications.

Algorithms
•  Stagger: attempt to avoid overlap of I/O phases by delaying some

applications by a small amount.
•  Control: I/O phase times are controlled centrally. I/O phase overlap is

reduced by allowing some applications to perform extra computation
iterations before entering an I/O phase.

•  Spread: No attempt is made to prevent I/O phase overlap; instead,
power is shifted on a best-effort basis.

Results
•  Performance improvements range from 2% when I/O phases

take 10% of execution time to 8% when I/O phases take 50% of
execution time.

•  No applications experience performance degradation.

with contributions from:
Greg Bronevetsky (Google Inc.)

David Lowenthal
The University of Arizona

PaRSEC:	
 generic	
 run0me	
 for	

architecture-­‐aware	
 scheduling	

of	
 micro-­‐tasks	
 on	
 distributed	

many-­‐core	
 heterogeneous	

architectures	
 Co

nc
ep

ts
	
 •  Clear	
 separa0on	
 of	
 concerns:	
 compiler	
 op0mize	
 each	
 tasks,	

developer	
 describe	
 dependencies	
 between	
 tasks,	
 the	

run0me	
 orchestrate	
 the	
 dynamic	
 execu0on	

•  Interface	
 with	
 the	
 applica0on	
 developers	
 through	

specialized	
 Domain	
 Specific	
 Languages	
 (PTG,	
 insert_task,	

fork/join,	
 …)	

•  Separate	
 algorithms	
 from	
 data	
 distribu0on	

•  Expose	
 maximal	
 parallelism	
 by	
 minimizing	
 the	
 control	
 flow	

Ru
n0

m
e	

•  Permeable	
 portability	
 layer	
 for	
 heterogeneous	
 architectures	

•  Scheduling	
 policies	
 adapt	
 every	
 execu0on	
 to	
 the	
 hardware	

&	
 ongoing	
 system	
 status	

•  Data	
 movements	
 between	
 consumers	
 are	
 inferred	
 from	

dependencies.	
 Communica0ons/computa0ons	
 overlap	

naturally	
 unfold	

•  Coherency	
 protocols	
 minimize	
 data	
 movements	

•  Memory	
 hierarchies	
 (including	
 NVRAM	
 and	
 disk)	
 integral	

part	
 of	
 the	
 scheduling	
 decisions	

Re
si
lie
nc
e	

•  Data	
 versioning,	
 copy-­‐on-­‐write,	
 data	
 logging	
 tracks	
 changes	

applied	
 on	
 the	
 data.	

•  Variable	
 interval	
 data	
 logging	
 (snapshot)	
 based	
 on	
 algorithm	

proper0es,	
 accepted	
 overhead,	
 amount	
 of	
 extra	
 memory,	

and	
 hardware	
 MTBF.	

•  Whenever	
 a	
 task	
 fails	
 the	
 valida0on	
 stage,	
 or	
 the	
 OS	
 inform	

the	
 run0me	
 about	
 unrecoverable	
 memory	
 corrup0ons,	
 the	

run0me	
 can	
 automa0cally	
 build	
 a	
 minimum	
 spanning	

recovery	
 DAG	
 composed	
 of	
 all	
 paths	
 from	
 snapshot	
 data	
 to	

the	
 failed	
 task.	

•  The	
 recovery	
 DAG	
 is	
 then	
 executed	
 in	
 parallel	
 with	
 original	

applica0on	
 DAG,	
 minimizing	
 the	
 overhead	

•  Snapshot	
 based	
 methods	
 are	
 generic	
 and	
 provided	

automa0cally	
 by	
 the	
 run0me.	
 ABFT	
 methods	
 require	
 data	

validators	
 provided	
 by	
 the	
 algorithm	
 developer	

•  Applica0on	
 developed	
 on	
 PaRSEC	
 are	
 resilient.	

Algorithm	
 Based	
 Fault	
 Tolerance	
 checksums	
 are	
 used	
 to	

maintain	
 consistently	
 valid	
 data	
 during	
 the	
 execu0on.	
 	

Node0

Node1

Node2

Node3

PO

GE

TR

SYTR TR

PO GE GE

TR TR

SYSY GE

PO

TR

SY

PO

SY SY

Data Snapshot

Reexecution

Soft error

detection

Consistent

data state

Instead	
 of	
 ABFT-­‐based	
 recovery,	
 the	
 run0me	
 keeps	
 copies	

of	
 older	
 versions	
 of	
 the	
 data	
 in	
 order	
 to	
 minimize	
 the	
 need	

for	
 re-­‐execu0on	
 (checkpoint	
 interval	
 once	
 every	
 10	

updates).	

