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 Amelioration of Errors in Data Structures 
•  re-initialization of key variable and either roll-back or roll-forward 
•  user-provided amelioration function 
•  redundant information in the form of checksums for matrices 

Error	  Detector	  Synthesis	  

#pragma resilience recover-rollback 
reinitialize (variable_list) {!
  <code block>!
}!

We are addressing the problems in software resilience 
with a holistic multifaceted approach that spans across 
software levels. One approach emphasizes tracking 
expected control flows or data invariants, and is aimed 
at detecting silent data corruption. Another explores 
language extensions and compiler technology to convey 
to compilers and run-time system resilience properties of 
code sections and algorithms. Additionally, we are 
investigating specific algorithmic properties of 
applications to develop fault tolerant extensions to dense 
and sparse methods. At the highest levels, we detect 
silent-data corruptions by replicating and comparing 
values across MPI processes and improve on the state 
of the art for checkpoint/restart with innovations in file 
systems and checkpoint compression. 
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#pragma resilience recover-rollforward 
reinitialize (variable_list) {!
  <code block>!
}!

#pragma resilience recover-rollback 
ameliorate (recovery_func) {!
  <code block>!
}!

#pragma resilience recover-rollforward 
ameliorate (recovery_func) {!
  <code block>!
}!

void *resilience_malloc_repairable (..., 
(void)(heal_func())*);!

heal(recovery_func()) float* matrix[N][N];!

•  association of amelioration function at allocation 

 Experiments 
•  Sequential Executions 
•  Accelerated Fault Injections 

•  Errors in text and code segments 
•  1 fault every 15/10/5/2/1 mins. 
•  Long application runs: 20 mins. Min. 

Codes: 
•  Matrix-Matrix Multiplication – uses row and column checksums 

for operand matrices A and B and the resilient malloc directive; 
•  Conjugate Gradient Solver – uses checksum in matrix A and 

protecting CG iterations steps with roll-forward using the checksum 
to validate correctness of the operand matrix; 

•  Self-Stabilizing Conjugate Gradient – protects iteration step 
using roll-backward and user-provided stability function for 
amelioration. 

Resilient	  Task-‐based	  Run-‐Time	  
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Modeling	  and	  OpDmizaDon	   Resilient	  Workflows	  

!  I/O power has a significant impact on tradeoffs  
!  Increases in power for computation increases energy consumption, but yields 

minor tradeoffs  
!  Power for computation should be significantly less than that for checkpointing in 

order for richer tradeoffs to exist 
!  Analysis of the tradeoffs between energy and run time for multilevel checkpointing. 

Balaprakash, Gomez, Bouguerra, Wild, Cappello, and Hovland. PMBS 2014. 
!  Energy-performance tradeoffs in multilevel checkpoint strategies. Balaprakash, 

Gomez, Bouguerra, Wild, Cappello, and Hovland. Cluster 2014. 

Conclusions	  

•  Develop analytical models for  both 
expected run time and energy consumption 
for multilevel FTI checkpointing schemes 
under generic error rates 

•  Characterize the Pareto-optimal solution set 
based on varying checkpoint frequency and 
investigate the tradeoffs between expected 
time and energy consumption 

•  Perform power consumption measurements 
of large-scale executions on an IBM Blue 
Gene/Q with several applications 

•  Experimental study to analyze several 
system-level parameters  (such as I/O 
power) for multilevel checkpointing that can 
potentially impact the tradeoffs 

time (energy) for a failure-free 
execution of an application  

+ 
expected time (energy) 

wasted due to failures and 
checkpointing  

(copy, rework, 
restart, downtime) 
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Objec.ves	   Analy.cal	  Modeling	  
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Objec.ves	  
•  An increasing fraction of high-end workloads are 

(dynamic) ensembles of workflows, e.g. UQ 
campaigns 

•  Failures occur across hardware, software, and 
application/model layers 

•  These workloads must be run autonomously in 
unreliable environments 

•  Capacity runs need orchestration to “run past faults” 
•  Many need to be co-located in high-end centers 

because of data communication requirements.  
•  Autonomous management of computational 

campaigns 
•  Develop support for multi-domain, network-aware 

policies for data-movement when ensemble and 
workflow members cross domain boundaries 

Approach	  
•  Ensemble management using 

glideins 
•  Create tool for SLURM to create, 

delete, and modify glideIns of pre-
defined types 

•  GlideIns should be transparently 
resilient to node failures by 
leveraging and extending health-
check plugins 

•  Capability to extend glideIns to 
virtual networked environments (out-
bursting) and vice versa (in-bursting) 
for seamless data movement 
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Applica.on	  Engagement	  
•  Engaging with DAKOTA toolkit (Sandia Labs) 
•  Studied different parallelism use cases for the 

DAKOTA toolkit for running ensembles 
•  Did preliminary performance analysis of the 

DAKOTA toolkit 
•  Resilient glideIns to be integrated with the “Job 

tiling” parallel use case using SLURM 

SLURM	  glideIns	  

Cross-‐domain	  
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Automated	  Error	  Detector	  Synthesis	  via	  Machine	  Learning	  
•  Protect stencil computations against soft errors 
•  Stencil based computations have high arithmetic intensity 
•  Target PDE solvers using stencil based computations 
•  Main memory and data cache often protected using ECC 
•  Focus on soft errors affecting CPU registers and its ALU 
•  Key idea is to use a variant of software level DMR 
•  Use approximate function for redundant computing 
•  Approximate function derived using machine learning 
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Outcome,	  Tools:	  
•  Ideas implemented and 

released in tool Sorrel 
www.cs.utah.edu/fv/FMR 

•  Found effective at trapping 
soft errors 

•  Overhead mitigation 
techniques being studied 

Background 
•  Future HPC systems will likely be power constrained. 
•  Many applications include periodic, low-power  I/O phases. 
•  Thus, applications may be power limited during computation phases but 

have extra power during I/O phases. 
•  This extra power can be reallocated to other applications to improve 

performance. 
•  The performance improvement will be greatest if we minimize overlap 

between I/O phases of different applications. 

Algorithms 
•  Stagger: attempt to avoid overlap of I/O phases by delaying some 

applications by a small amount. 
•  Control: I/O phase times are controlled centrally.  I/O phase overlap is 

reduced by allowing some applications to perform extra computation 
iterations before entering an I/O phase. 

•  Spread: No attempt is made to prevent I/O phase overlap; instead, 
power is shifted on a best-effort basis. 

Results 
•  Performance improvements range from 2% when I/O phases 

take 10% of execution time to 8% when I/O phases take 50% of 
execution time. 

•  No applications experience performance degradation. 
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PaRSEC:	  generic	  run0me	  for	  
architecture-‐aware	  scheduling	  
of	  micro-‐tasks	  on	  distributed	  
many-‐core	  heterogeneous	  
architectures	   Co

nc
ep

ts
	   •  Clear	  separa0on	  of	  concerns:	  compiler	  op0mize	  each	  tasks,	  

developer	  describe	  dependencies	  between	  tasks,	  the	  
run0me	  orchestrate	  the	  dynamic	  execu0on	  

•  Interface	  with	  the	  applica0on	  developers	  through	  
specialized	  Domain	  Specific	  Languages	  (PTG,	  insert_task,	  
fork/join,	  …)	  

•  Separate	  algorithms	  from	  data	  distribu0on	  
•  Expose	  maximal	  parallelism	  by	  minimizing	  the	  control	  flow	  

Ru
n0

m
e	  

•  Permeable	  portability	  layer	  for	  heterogeneous	  architectures	  
•  Scheduling	  policies	  adapt	  every	  execu0on	  to	  the	  hardware	  

&	  ongoing	  system	  status	  
•  Data	  movements	  between	  consumers	  are	  inferred	  from	  

dependencies.	  Communica0ons/computa0ons	  overlap	  
naturally	  unfold	  

•  Coherency	  protocols	  minimize	  data	  movements	  
•  Memory	  hierarchies	  (including	  NVRAM	  and	  disk)	  integral	  

part	  of	  the	  scheduling	  decisions	  

Re
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•  Data	  versioning,	  copy-‐on-‐write,	  data	  logging	  tracks	  changes	  
applied	  on	  the	  data.	  

•  Variable	  interval	  data	  logging	  (snapshot)	  based	  on	  algorithm	  
proper0es,	  accepted	  overhead,	  amount	  of	  extra	  memory,	  
and	  hardware	  MTBF.	  

•  Whenever	  a	  task	  fails	  the	  valida0on	  stage,	  or	  the	  OS	  inform	  
the	  run0me	  about	  unrecoverable	  memory	  corrup0ons,	  the	  
run0me	  can	  automa0cally	  build	  a	  minimum	  spanning	  
recovery	  DAG	  composed	  of	  all	  paths	  from	  snapshot	  data	  to	  
the	  failed	  task.	  

•  The	  recovery	  DAG	  is	  then	  executed	  in	  parallel	  with	  original	  
applica0on	  DAG,	  minimizing	  the	  overhead	  

•  Snapshot	  based	  methods	  are	  generic	  and	  provided	  
automa0cally	  by	  the	  run0me.	  ABFT	  methods	  require	  data	  
validators	  provided	  by	  the	  algorithm	  developer	  

•  Applica0on	  developed	  on	  PaRSEC	  are	  resilient.	  

Algorithm	  Based	  Fault	  Tolerance	  checksums	  are	  used	  to	  
maintain	  consistently	  valid	  data	  during	  the	  execu0on.	  	  
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Instead	  of	  ABFT-‐based	  recovery,	  the	  run0me	  keeps	  copies	  
of	  older	  versions	  of	  the	  data	  in	  order	  to	  minimize	  the	  need	  
for	  re-‐execu0on	  (checkpoint	  interval	  once	  every	  10	  
updates).	  


