
The Zoltan2 Toolkit:
Partitioning, Task Placement, Coloring and Ordering

Zoltan2:	
 	
 A	
 new	
 toolkit	
 of	
 combinatorial	
 algorithms	
 addressing	
 the	
 needs	
 of	
 parallel	
 applica9ons	
 on	
 emerging	
 architectures	

More Information: http://www.fastmath-scidac.org or contact Karen Devine, kddevin@sandia.gov

.	

Successor to the Widely Used Zoltan Toolkit
Zoltan Zoltan2

Parallelism MPI-only MPI+X
API Application builds model

(e.g., graph, hypergraph)
for algorithm

Application describes its data
(matrix, mesh); algorithm
builds model

Capabilities Parallel partitioning
Parallel coloring
Global and local ordering

Parallel partitioning
Architecture-aware task
placement
On-node coloring
On-node ordering

Optional
TPLs

PT-Scotch (INRIA/LaBRI)
ParMETIS (U. Minnesota)
PaToH (Ohio St. U.)

PT-Scotch (INRIA/LaBRI)
ParMETIS (U.Minnesota)
ParMA (Rensselaer)
AMD (U.Florida)
LDMS: Lightweight Distributed
 Metric Service (Sandia)

Maturity Highly mature;
maintenance only

Research platform for
emerging architectures

Integration No dependence on
Trilinos

Integrated with Trilinos next-
generation software stack

Language C (with F90 & C++ APIs) Templated C++11
Distribution Stand-alone or in Trilinos In Trilinos

Zoltan2 Overview and Goals
Algorithms needed by applications on emerging architectures
•  Partitioning and task placement for hierarchical memory systems
•  Node-level coloring for multi-threaded parallelism

Multi-threaded implementations that run on emerging architectures

Support for very large application problem sizes
•  Templated data types for local and global indices

Application-focused interface supporting meshes, matrices, vectors,
particles, coordinates, graphs

Open-source software in Trilinos’ next-generation
solver stack

FASTMath Team Members: K. Devine, M. Deveci, V. Leung, S. Rajamanickam, M. Wolf (Sandia); G. Diamond (Rensselaer)
In collaboration with E. Boman, J. Brandt, A. Gentile, S. Olivier, K. Pedretti, L.A. Riesen (Sandia); Ümit Çatalyürek (Ohio State)

On-Node Balanced Graph Coloring
Coloring: Label graph vertices so that adjacent vertices have
different labels and the number of labels is small
•  Good for on-node parallelism: Each label is an independent set

that can be computed in parallel

Balanced coloring: Label roughly the same number of vertices with
each label, at the possible expense of using slightly more labels
•  Important for GPUs: labels with too few vertices cause idle time

4

2

5

3 6

1

Balanced coloring of
matrix columns

1 2 3 4 5 6
1 X X
2 X X X X X X
3 X X X
4 X X X X
5 X X
6 X X X

On-Node Matrix Ordering
Find permutation of local matrix that reduces fill during factorization
•  Reverse Cuthill-McKee
•  Sorted Degree
•  Approximate Minimum Degree, via AMD
Used, e.g., in Trilinos' IFPACK2 sparse-matrix preconditioners

•  ***

•  ****

Ongoing and Future Work
•  Integration of Kokkos performance-portable programming model

(Edwards, Trott; Sandia) into Zoltan2 interface and algorithms
•  KokkosKernels: New toolkit of on-node Kokkos-based graph

algorithms
•  Task placement for new network topologies (e.g., Dragonfly)
•  Interface to PULP (Slota, Madduri, Rajamanickam; PSU, Sandia)

for partitions that minimize multiple constraints & objectives

•  ***

•  ****

Architecture-Aware Task Placement
Given a (possibly non-contiguous) node allocation in a parallel
computer, reduce application communication costs and runtime by
placing interdependent MPI tasks on "nearby" cores

Important in extreme-scale systems:
•  Allocations can be sparse and spread far across the network
•  Messages can travel long routes
•  Increasing locality reduces congestion and communication time

Approach:
•  Use geometric proximity of tasks' data as a proxy for

communication costs between tasks
•  Apply MultiJagged partitioner to order both tasks' data and

nodes’ coordinates
•  Map a task to the core with the same part number

Tasks with
stencil-like
communication
pattern

Geometric task
placement on

allocated nodes
in torus network

0

1

2

3

4

5

6

7

8

41

0

2 5

3

6

7

8

4

Scalable Partitioning

Unstructured mesh partitioning;
image courtesy of Bhardwaj (Sandia)

Integrated with
•  Graph partitioning: PT-Scotch;

ParMETIS
•  Hypergraph partitioning: Zoltan
•  Mesh partitioning & partition

improvement: ParMA (Rensselaer)

Assign data/work to processors so that processor idle time and
interprocessor communication are minimized

MultiJagged: Multi-threaded geometric (coordinate) partitioning
•  MPI+OpenMP implementation
•  Multisection has less data movement, greater

scalability than Recursive Coordinate Bisection
•  Fast; scalable; enforces geometric locality
•  Good for adaptivity, particles, contact detection

Topology-based (graph, hypergraph, mesh) partitioning
•  Explicitly models communication costs through data dependencies
•  Good for mesh-, matrix- and network-based applications

3x3-part MultiJagged
partition

