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Relevance 

•  Many applications involve uncertain inputs/outputs that have 
spatial or time dependence 

•  Such an uncertain function, represented probabilistically, is a 
random field/process.  

o It is a random variable at each space/time location 

o Generally with some correlation structure in space/time 

o An infinite-dimensional object 
•  The Karhunen Loeve expansion (KLE) provides an optimal 

representation of random fields, employing a (small) number of 
eigenmodes of its covariance function  

Random Fields 

•  Uncertain KLE given limited # of samples; Bayesian framework 
•  Compute principal directions of maximum variance 
•  Produce error bounds on the principal modes themselves 
•  The figure shows PCA modes in solid colored lines overlaid with 

the uncertainty: shaded regions.  

Bayesian Estimation of  KLE 

More samples, less uncertainty. Uncertainty is shown as the shaded 
regions.  

Large-Scale Parallel SVD Algorithms 

•  KLE requires eigenvectors of sample covariance matrix. 
•  We utilize Trilinos’ Anasazi  package for large-scale eigenvector/ 

eigenvalue parallel algorithms.   
•  Using John’s Hopkins Turbulence database, we analysis time-

dependent particle velocities for isotropic turbulence.  
•  In this example, the random field is the fluid velocity profile at 

5123 data points (~134 million data points).  

•  This figure shows the seconds 
per iteration for Anasazi’s block 
Krylov Schur Solver on a 5123-
dimensional data set. 

•  Note that after about 3000 
processors, communication 
bottlenecks cause slow down.  

Model Error Hessian informed MCMC 

Preconditioned l-1 Sampling for PCE 

Bayesian Inference 

•  Bayesian inference is an approach for updating subjective beliefs 
(i.e., prior assumptions about uncertainty) based on evidence 
(i.e., observational data). 

•  Bayes’ rule expresses the posterior probability density of ξ 
conditioned on d as the product of a likelihood model p(d|ξ), that 
quantifies the probability that a random variable ξ could produce 
the observational data d, and p(ξ), the prior density of ξ. 

Improving MCMC with adaptive proposals 

•  MCMC provides a sequential method to sample from the 
posterior density.  

•  MCMC needs many samples, mixing time can increase with 
dimension, and choosing a good proposal can be difficult.  

•  We use a Gauss-Newton approximation to the Hessian of the 
posterior (with a PCE emulator in lieu of the true forward model) 
as a proposal density. 
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These three figures illustrate MCMC sampling with exact Hessians of the full posterior. We also show 
rejection rates comparisons between different choice of proposals. Proposals based on Hessians 
including prior information perform better with lower rejection rates, especially for more compact/ 
local priors.  

Standard `1-minimization
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•  We design a sampling scheme with 
better reconstruction error for a given 
number of random samples.  

•  The reconstructed function is a sparse 
PCE.   

•  Sampling scheme is based on a 
change of measure, similar to 
importance sampling.  

•  Change of measure reduces the 
condition number of the Vandermonde 
matrix and reduces the max norm 
bound of each column. 
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•  Example change of measure functions 
(in red) for standard densities. Note 
that new measures are compact.  
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•  Performs just as good as the state-of-
the-art algorithms in low-dimensions, but 
better in higher dimensions.  

•  In higher dimensions, Monte Carlo 
techniques are comparable.  

•  Models rely on physical assumptions and are not perfect 
•  Model error (discrepancy from truth) is often non-negligible 
•  Model error estimation is useful for model validation, comparison 

and reliable predictions 
 
•  Explicit statistical modeling of 
   model error has shortcomings  

•  Instead, we embed the model  
   error directly into the model  
•  Cast some inputs as random variables  
   and infer the parameters describing their PDF 
•  Density estimation problem for Λ	

•  Can be formulated in a Bayesian framework 

•  Allows well-defined model-to-model calibration 
•  Discrepancy correlations are driven by the model 
•  Respects physical constraints 
•  Allows calibrated predictions of multiple QoIs 
•  Disambiguates model and data error 
•  Predictive uncertainty is broken into parts due to  
   model error and data noise 

Advantages 
 

Motivation 
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Embedded Model Error Approach 

Toy example 
•  Consider “truth” g(x)=6+x2+0.5(x+1)3.5,  
     measured with noise σ=0.5 
 
•  Calibrate three approximate models 

•  Line    : f(x,λ)=λ0+λ1x 
•  Quad  : f(x,λ)=λ0+λ1x+λ2x2 

•  Cube  : f(x,λ)=λ0+λ1x+λ2x2+λ3x3 
 

•  Data noise component of predictive 
uncertainty reduces with more data 

•  Model error converges to a limiting value, 
    because all three models are wrong! 

 

Quad Model, N=50 Quad Model, N=1000 


