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Requirements Driving Meshing Efforts 

Meshing in Edge Physics Simulations 

Critical to account for the physics of the particle motion in the 
models and associated numerical solution methods 
• Motion primarily confined to be along field lines of the 

magnetic field (on which the magnetic  
flux is constant) 

• Motion of particles in toroidal direction  
much faster than in the poloidal plane  

Effective numerical models account for  
the physics of the particle motion –  
leads to a set of mesh requirements 
• Primary mesh is a 2D mesh resolving the poloidal plane 
o Most effective to carefully align mesh to follow magnetic field 

lines in the critical regions 
o Projection of particle motion on the poloidal plane controls 

mesh vertex placement on flux curves 
o Coupling of particle and mesh methods, and accuracy of 

mesh method dictate mesh fineness and gradation, as well 
as need for element shape control 

Poisson Solvers in XGC1 

Must capture behaviors at multiple scales 
• Employ overlapping two scale approach to solve 

gyrokinetic Vlasov equations 
o Tracking of ions and electrons through particle 

equations of motion 
o Gyrokinetic Maxwell equation numerically solved at  

the reactor scale to define fields that push particles 
o Must account for coupling of fields and particles 

XGC code is a highly parallel code that implements this 
multiscale simulation 
• Particle motion is updated using Runge-Kutta 4 step 

iteration or 3rd-order Predictor-Corrector 
• Reactor fields solved using an unstructured mesh  

finite element method 
• Mesh and particles must be properly coupled at each  

step in the simulation CHAPTER 2. SCIENTIFIC ISSUES

turbulence in three-dimensional plasma equilibria, such as regions with magnetic islands or
the open flux surface regions in the scrape-off-layer at the edge of the plasma. Additionally,
the capability must be developed to launch a gyrokinetic simulation using local parameters
produced by integrated modeling simulations. Comprehensive reduced transport models must
be developed using these advanced gyrokinetic capabilities. Models for all of the channels of
transport are needed with sufficient physics fidelity to simulate internal transport barriers.

ELM models must extend over a larger wavelength range than in current codes in order to
resolve nonlinear interactions adequately. ELM simulations are being developed to extend to
small wavelengths, including gyrokinetic effects, in order to reproduce the observed filamentation
in the scrape-off layer. ELM models need to be developed in order to simulate the complete ELM
crash routinely with the nonlinear transport of energy, momentum, particles, and the associated
plasma current. Also, models for the various types of ELMs must be developed.

2.2.2 Large-scale instabilities

(1) What are the compelling scientific issues for which computation is required?

Large-scale or macroscopic insta-

Figure 2.5: Kink instability from a nonlinear extended
MHD simulation.

bilities limit plasma performance in
all magnetic confinement devices. In
tokamaks, sawtooth oscillations (and
more generally m = 1 instabilities
shown in Fig. 2.5), conventional and
neoclassical tearing modes, ideal MHD
pressure- and current-driven instabil-
ities and resistive wall modes restrict
operational regimes and lead to con-
finement degradation and disruptions.
For ITER and beyond, it is crucial
that predictive understanding of the
nonlinear dynamics of these instabil-
ities be used to develop tools for in-
stability avoidance, suppression, and
mitigation. While linear MHD pro-
vides an excellent predictive capabil-
ity for ideal instability onset, nearly
all of the forefront research in macro-
scopic instability modeling involves non-
linear mode evolution using extended MHD models. Extended MHD includes physics relevant to
long mean free path plasmas where kinetic and neoclassical processes are of central importance
for predicting the complete evolution of large-scale instabilities.
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Automatic meshing requires unique geometry representation 
• Boundary representation required 
• Meshing requirements dictate geometric model meshed – it 

includes combination of physical and physics entities 
• Flux surfaces are key physics component required 
o Require mesh vertices specifically placed on flux curves 

 
 

• Constant flux curves constructed from data measured  
on a uniform grid 
o Input flux (ψ) values are obtained from experimental  

data on a coarse uniform grid 
o Interpolative splines are constructed from this data to 

give continuous and smooth ψ values 
o Curves are then constructed to be perpendicular to the 

gradient of ψ and parallel to the magnetic field, meaning 
each curve has a constant ψ value 

o Multiple X-point configurations supported 
o Multiple control options for ψ curves used and nodal 

spacing 

Geometry Definition   
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• Original method took hours of combined human and 

machine time and mesh not completely satisifactory 
• Run time (human plus machine) for new procedure 

reduced to minutes 
• New procedure will support dealing with new and more 

complex reactor configurations (e.g., ITER)   

Mesh Generation Examples 

Meshing Generation Method 
Combines multiple meshing functions 
• General triangulation 
o Generate well shaped, graded 

mesh near reactor wall where  
geometry is complex 

• One-element layered meshing procedure 
o Require depth of one element between critical flux 

curves 
o Given constant flux curves with vertices placed as 

required by the vertex to follow particles, a direct 
algorithm used to construct best shaped elements 

 
 
 
 
 
 
 
 

• Mesh Control near X-points 
o Near X-point the one-element procedure between flux 

surfaces produces poorly shaped elements 
-  Such element can degrade the local solution 
-  Local physics is such that maintaining the one-

element deep layer is not critical 
o Apply local general mesh modifications to control 

element shapes  

 
 

• User interface procedures provided that include easy to 
specify mesh control functions 

ini.al	
  layered	
  mesh	
  	
  
at	
  X-­‐point	
  

mesh	
  at	
  X-­‐point	
  aNer	
  
mesh	
  modifica.on	
  

Strongly	
  graded	
  to	
  
coarse	
  wall	
  mesh	
  

Graded	
  to	
  a	
  	
  
finer	
  wall	
  mesh	
  

§  Gyrokine.c	
  Poisson	
  Equa.on	
  with	
  adiaba.c	
  electrons	
  
•  Old	
  method,	
  definite	
  Helmholtz,	
  MG	
  useful	
  
	
  
	
  
	
  
	
  
	
  

§  Real	
  electrons	
  
•  Need	
  mul.grid,	
  pure	
  ellip2c	
  
•  Stable	
  produc.on	
  solver	
  
	
  
	
  
	
  
	
  
	
  

§  Two	
  new	
  solvers	
  under	
  development	
  
1.  Flux	
  surface	
  electron	
  equilibrium	
  model	
  (FSA)	
  
-  More	
  accurate	
  electron	
  model,	
  electro-­‐sta.c	
  

2.  Hybrid	
  kine.c	
  ions	
  +	
  fluid	
  electrons	
  	
  
-  Faster	
  in	
  theory:	
  implicit	
  MHD,	
  skip	
  fast	
  Alvene	
  wave	
  
-  Electro-­‐magne.c	
  

•  Future:	
  fully	
  kine7c	
  electrons	
  &	
  ions	
  with	
  electro-­‐magne7c	
  
terms	
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“FSA”	
  solver	
  with	
  PETSc	
  FieldSplit	
  

§  Add	
  auxiliary	
  variable	
  for	
  <Φ>	
  in	
  FieldSplit	
  
§  Create	
  lineariza.on	
  for	
  precondi.oner	
  matrix	
  
•  Linearizing	
  about	
  phi=0	
  

§  Use	
  matrix	
  free	
  operator	
  for	
  nonlinear	
  version	
  of	
  solver	
  	
  
•  Precondi.oned	
  by	
  linearized	
  matrix	
  

§  Use	
  PETSc	
  FieldSplit	
  and	
  MatNest	
  object	
  	
  
§  Problem:	
  <Φ>	
  is	
  global	
  
•  small	
  number	
  ~	
  O(102)	
  and	
  linear	
  	
  

§  Approach:	
  	
  compute	
  explicit	
  Schur	
  complement	
  
•  Block	
  factoriza.on	
  precondi.oner,	
  non-­‐itera.ve	
  
•  Total	
  solve	
  .me	
  ~2	
  X	
  Laplacian	
  solve	
  .me	
  
•  But	
  large	
  setup	
  cost	
  that	
  needs	
  amor.zing	
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2.	
  Hybrid	
  fluid	
  (MHD)	
  electrons	
  &	
  kine7c	
  ions	
  

§  Second	
  branch	
  (EM),	
  less	
  expensive,	
  no	
  kine.c	
  electrons	
  
§  Evolve	
  electron	
  density	
  with	
  fluid	
  formula.ons	
  (cheaper)	
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§  PETSc	
  .me	
  stepper	
  (TS)	
  with	
  IMEX	
  solve	
  (some	
  slow	
  
terms	
  moved	
  to	
  RHS)	
  

§  2	
  auxiliary	
  equa.ons	
  (for	
  poten.al	
  and	
  current)	
  
•  Verify	
  w/	
  reduced	
  prob:	
  fast	
  wave	
  &	
  slow	
  growth	
  mode	
  
•  Fully	
  implicit	
  
•  Again	
  use	
  PETSc	
  Field	
  split	
  solvers	
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Showing	
  flexibility	
  
in	
  mesh	
  control	
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Explicit	
  method	
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