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e L eshing in Edge Physics Simulations Meshing Generation Method
2. Hybrid fluid (MHD) electrons & kinetic ions 9 9 y 9
= Gyrokinetic Poisson Equation with adiabatic electrons . o Must capture behaviors at multiple scales Combines multiple meshing functions
* Old method, definite Helmholtz, MG useful " Second branch (EM)’ less €EXPENSIVE, NO kinetic electrons o Emp|0y Over|apping two scale approach to solve * General triangulation %ng':f%:%v
" Evolve electron density with fluid formulations (cheaper) gyrokinetic Vlasov equations o Generate well shaped, graded s
\V; m, VP+P = ' B ' o Tracking of ions and electrons through particle mesh near reactor wall where ¢ " " e Graded to s
-V, eBZ it 4+ — ni o 0 +0f o) -nl- P " 170 0 0 -nl- -_Cl- equations of motion geometry is complex coarse wall mesh  finer wall mesh
FUU)=|0 —%Vf v, ||Al+ J[A} =10 0 O||A|+| 0 [=GW)+C o Gyrokinetic Maxwell equation numerically solved at * One-element layered meshing procedure
Real elect ; . nm, o 2 0 0 0 Ojl¢]| |[on, the reactor scale to define fields that push particles o Require depth of one element between critical flux
= E ZC ro:n? y . - B ] o Must account for coupling of fields and particles curves
Need multigri ., pure elliptic 0/ =BOV”LV3 O = 2 B xVB,* VT XGC code is a highly parallel code that implements this o Given constant flux curves with vertices placed as
* Stable production solver euB, ~ m 2B, B il feeal e sl Eier required by the vertex to follow particles, a direct
mn O: —V]—BO .V x % , O} =%BO < VB, *V+Vn, s (% < V) - Particle motion is updated using Runge-Kutta 4 step algorithm used to construct best shaped elements
-V 'Vd=7n.—n o 0 0 0 iteration or 3-order Predictor-Corrector
/ Ryl : :
teB® ¢ l ) Ci=BVy =~ * Reactor fields solved using an unstructured mesh
= PETSc time stepper (TS) with IMEX solve (some slow finite element method
= Two new solvers under development terms moved to RHS) . Mesh and pgrtmleg must be properly coupled at each
el step in the simulation
1. Flux surface electron equilibrium model (FSA) = 2 auxiliary equations (for potential and current) K /
- More accurate electron model, electro-static » Verify w/ reduced prob: fast wave & slow growth mode J
2. Hybrid kinetic ions + fluid electrons , .
— Faster in theory: implicit MHD, skip fast Alvene wave * Fully implicit Reauirements Drivina Meshina Efforts — Wworking edge - marching option -~ invalid marching
~ Hhcremeansee e Again use PETSc Field split solvers 9 g 9 - Mesh Control near X-points
 Future: fully kinetic electrons & ions with electro-magnetic f 1 ] g Critical to account for the physics of the particle motion in the o Near X-point the one-element procedure between flux
\ terms / 0 0 0 BVi—I|[n]| |Zm| [0 models and associated numerical solution methods surfaces produces poorly shaped elements
eb, A %t 0 » Motion primarily confined to be along field lines of the - Such element can degrade the local solution
/ \ 0 0 Vi 0 +|—Al= magnetic field (on which the magnetic - Local physics is such that maintaining the one-
1. Perturbative calculation of electron density M0 M, 0 0 ot 0 flux is constant) element deep layer is not critical
_ 1 distribut . ¢ tcles for &f B B*> 1 7 0 0 * Motion of particles in toroidal direction o Apply local general mesh modifications to control
S el (UEHOCILI, S WER SO [PEltidEs LRk 0 _V?2 0 M L= 0 L= much faster than in the poloidal plane element shapes
* f,is of form (with K kinetic energy): ] 1 U ] ] ] . .
. K+ e(q) _ <(I)>) Effective numerical models account for
* <>is flux surface average (FSA) f, =Cexp| - - the physics of the particle motion —

" XGC1 calculates perturbation from Boltzmann density (i.e.
adiabatic electron response) along field line, which equilibrate 03f

leads to a set of mesh requirements
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] * Primary mesh is a 2D mesh resolving the poloidal plane /
to flux surface | Most effective to carefully align mesh to follow magnetic field = ' N
o Most effective to carefully alig 9 e N YAY;
D — <(I)> 021 {4 Explicit method lines in the critical regions / <>
n, =n,exp +0n P L . | _ A "4M
e e e o Projection of particle motion on the poloidal plane controls '\g A’ﬁ
" ¢-(P) Iispotential variation along field line/surface 0.1 1 |, 100 time steps mesh vertex placement on flux curves SR .
= Poisson equation: o Coupling of particle and mesh methods, and accuracy of initial layered mesh mESh;t X'g%!”tt?ﬂer
) D — (D) o E mesh method dictate mesh fineness and gradation, as well ~ atX-point - MESH MOCINcation
—AD +n, exp =n -0n  User interface procedures provided that include easy to
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as need for element shape control | |
\ / \spemfy mesh control functions
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= Poisson equation with linearization of exponential:
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=n.-n, -on, Geometry Definition Mesh Generation Examples
“ ” : - : Automatic meshing requires unique geometry representation * Original method took hours of combined human and
FSA” solver with PETSc FieldSplit - Boundary representation required machine time and mesh not completely satisifactory
(A n (n() /T ) -n’/TB \/ D ) /n, —n’ - 6n )  Meshing requirements dictate geometric model meshed — it * Run time (human plus machine) for new procedure
e e 2 e =| € . f 10 includes combination of physical and physics entities reduced to minutes
\ Cave —/ ) \<(I)>/ \ 0 ) = 1° » Flux surfaces are key physics component required * New procedure will support dealing with new and more
= Add auxiliary variable for <®> in FieldSplit [, Implicit method o Require mesh vertices specifically placed on flux curves complex reactor configurations (e.g., ITER)
= Create linearization for preconditioner matrix . physics components ) 1Z physical components
e Linearizing about phi=0 2 10 time steps
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= Use matrix free operator for nonlinear version of solver 8 o
wall region

e Preconditioned by linearized matrix B [ P e e e e e N\A | L L AN 5
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= Use PETSc FieldSplit and MatNest object s S AL 4!;' N
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= Problem: <®> is global Schur = -1 + Cm(A +
* small number ~ O(102%) and linear
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= Approach: compute explicit Schur complement 11 outer wall boundary
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e Block factorization preconditioner, non-iterative 6 < boint X 12 inner wall boundary SRR BT e S | | ~mesh to show
. . . ~_ DL - features
e Total solve time ~2 X Laplacian solve time 14 XS

* Constant flux curves constructed from data measured
on a uniform grid

o Input flux (y) values are obtained from experimental
data on a coarse uniform grid

e But large setup cost that needs amortizing

FSA solver results

¢, time=_ 0.000s, tstep=1 ¢_,time=  0.000 s, tstep=1 o Interpolative splines are constructed from this data to
0.6 " 06 give continuous and smooth y values
] | Old Iterative ] Z New PETSc solver o Curves are then constructed to be perpendicular to the
047 ]  solver 04F '. gradient of y and parallel to the magnetic field, meaning
; 22 . | ) 23 . Solution after one each curve has a constant g value
“I : iglgggn after T iteration o Multiple X-point configurations supported

E 0.0k 1 .. E ook _ o Multiple control options for g curves used and nodal
NI ] iterations N : : 0.086 sec spacing
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0.2¢ | 384sec i : Showing flexibility

' o4k - » in mesh control
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