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Requirements Driving Meshing Efforts 

Meshing in Edge Physics Simulations 

Critical to account for the physics of the particle motion in the 
models and associated numerical solution methods 
• Motion primarily confined to be along field lines of the 

magnetic field (on which the magnetic  
flux is constant) 

• Motion of particles in toroidal direction  
much faster than in the poloidal plane  

Effective numerical models account for  
the physics of the particle motion –  
leads to a set of mesh requirements 
• Primary mesh is a 2D mesh resolving the poloidal plane 
o Most effective to carefully align mesh to follow magnetic field 

lines in the critical regions 
o Projection of particle motion on the poloidal plane controls 

mesh vertex placement on flux curves 
o Coupling of particle and mesh methods, and accuracy of 

mesh method dictate mesh fineness and gradation, as well 
as need for element shape control 

Poisson Solvers in XGC1 

Must capture behaviors at multiple scales 
• Employ overlapping two scale approach to solve 

gyrokinetic Vlasov equations 
o Tracking of ions and electrons through particle 

equations of motion 
o Gyrokinetic Maxwell equation numerically solved at  

the reactor scale to define fields that push particles 
o Must account for coupling of fields and particles 

XGC code is a highly parallel code that implements this 
multiscale simulation 
• Particle motion is updated using Runge-Kutta 4 step 

iteration or 3rd-order Predictor-Corrector 
• Reactor fields solved using an unstructured mesh  

finite element method 
• Mesh and particles must be properly coupled at each  

step in the simulation CHAPTER 2. SCIENTIFIC ISSUES

turbulence in three-dimensional plasma equilibria, such as regions with magnetic islands or
the open flux surface regions in the scrape-off-layer at the edge of the plasma. Additionally,
the capability must be developed to launch a gyrokinetic simulation using local parameters
produced by integrated modeling simulations. Comprehensive reduced transport models must
be developed using these advanced gyrokinetic capabilities. Models for all of the channels of
transport are needed with sufficient physics fidelity to simulate internal transport barriers.

ELM models must extend over a larger wavelength range than in current codes in order to
resolve nonlinear interactions adequately. ELM simulations are being developed to extend to
small wavelengths, including gyrokinetic effects, in order to reproduce the observed filamentation
in the scrape-off layer. ELM models need to be developed in order to simulate the complete ELM
crash routinely with the nonlinear transport of energy, momentum, particles, and the associated
plasma current. Also, models for the various types of ELMs must be developed.

2.2.2 Large-scale instabilities

(1) What are the compelling scientific issues for which computation is required?

Large-scale or macroscopic insta-

Figure 2.5: Kink instability from a nonlinear extended
MHD simulation.

bilities limit plasma performance in
all magnetic confinement devices. In
tokamaks, sawtooth oscillations (and
more generally m = 1 instabilities
shown in Fig. 2.5), conventional and
neoclassical tearing modes, ideal MHD
pressure- and current-driven instabil-
ities and resistive wall modes restrict
operational regimes and lead to con-
finement degradation and disruptions.
For ITER and beyond, it is crucial
that predictive understanding of the
nonlinear dynamics of these instabil-
ities be used to develop tools for in-
stability avoidance, suppression, and
mitigation. While linear MHD pro-
vides an excellent predictive capabil-
ity for ideal instability onset, nearly
all of the forefront research in macro-
scopic instability modeling involves non-
linear mode evolution using extended MHD models. Extended MHD includes physics relevant to
long mean free path plasmas where kinetic and neoclassical processes are of central importance
for predicting the complete evolution of large-scale instabilities.
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Automatic meshing requires unique geometry representation 
• Boundary representation required 
• Meshing requirements dictate geometric model meshed – it 

includes combination of physical and physics entities 
• Flux surfaces are key physics component required 
o Require mesh vertices specifically placed on flux curves 

 
 

• Constant flux curves constructed from data measured  
on a uniform grid 
o Input flux (ψ) values are obtained from experimental  

data on a coarse uniform grid 
o Interpolative splines are constructed from this data to 

give continuous and smooth ψ values 
o Curves are then constructed to be perpendicular to the 

gradient of ψ and parallel to the magnetic field, meaning 
each curve has a constant ψ value 

o Multiple X-point configurations supported 
o Multiple control options for ψ curves used and nodal 

spacing 

Geometry Definition   

magne.c	  axis	  

open	  flux	  surface	  
closed	  flux	  surface	  

separatrix	  

	  scrape-‐off	  layer	  

plasma	  core	  

x	  point	  

vacuum	  vessel	  	  
wall	  region	  
plasma	  region	  
vacuum	  boundary	  

outer	  wall	  boundary	  

	  inner	  wall	  boundary	  

physics	  components	   physical	  components	  

 
• Original method took hours of combined human and 

machine time and mesh not completely satisifactory 
• Run time (human plus machine) for new procedure 

reduced to minutes 
• New procedure will support dealing with new and more 

complex reactor configurations (e.g., ITER)   

Mesh Generation Examples 

Meshing Generation Method 
Combines multiple meshing functions 
• General triangulation 
o Generate well shaped, graded 

mesh near reactor wall where  
geometry is complex 

• One-element layered meshing procedure 
o Require depth of one element between critical flux 

curves 
o Given constant flux curves with vertices placed as 

required by the vertex to follow particles, a direct 
algorithm used to construct best shaped elements 

 
 
 
 
 
 
 
 

• Mesh Control near X-points 
o Near X-point the one-element procedure between flux 

surfaces produces poorly shaped elements 
-  Such element can degrade the local solution 
-  Local physics is such that maintaining the one-

element deep layer is not critical 
o Apply local general mesh modifications to control 

element shapes  

 
 

• User interface procedures provided that include easy to 
specify mesh control functions 

ini.al	  layered	  mesh	  	  
at	  X-‐point	  

mesh	  at	  X-‐point	  aNer	  
mesh	  modifica.on	  

Strongly	  graded	  to	  
coarse	  wall	  mesh	  

Graded	  to	  a	  	  
finer	  wall	  mesh	  

§  Gyrokine.c	  Poisson	  Equa.on	  with	  adiaba.c	  electrons	  
•  Old	  method,	  definite	  Helmholtz,	  MG	  useful	  
	  
	  
	  
	  
	  

§  Real	  electrons	  
•  Need	  mul.grid,	  pure	  ellip2c	  
•  Stable	  produc.on	  solver	  
	  
	  
	  
	  
	  

§  Two	  new	  solvers	  under	  development	  
1.  Flux	  surface	  electron	  equilibrium	  model	  (FSA)	  
-  More	  accurate	  electron	  model,	  electro-‐sta.c	  

2.  Hybrid	  kine.c	  ions	  +	  fluid	  electrons	  	  
-  Faster	  in	  theory:	  implicit	  MHD,	  skip	  fast	  Alvene	  wave	  
-  Electro-‐magne.c	  

•  Future:	  fully	  kine7c	  electrons	  &	  ions	  with	  electro-‐magne7c	  
terms	  
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1.	  Perturba7ve	  calcula7on	  of	  electron	  density	  	  
§  Maxwell	  distribu.on	  on	  flux	  surface,	  par.cles	  for	  δf	  
•  f0	  is	  of	  form	  (with	  K	  kine.c	  energy):	  
•  <>	  is	  flux	  surface	  average	  (FSA)	  

§  XGC1	  calculates	  perturba.on	  from	  Boltzmann	  density	  (i.e.	  
adiaba7c	  electron	  response)	  along	  field	  line,	  which	  equilibrate	  
to	  flux	  surface	  

	  
§  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  is	  poten.al	  varia.on	  along	  field	  line/surface	  	  	  
§  Poisson	  equa.on:	  

	  
§  Poisson	  equa.on	  with	  lineariza.on	  of	  exponen.al:	  
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“FSA”	  solver	  with	  PETSc	  FieldSplit	  

§  Add	  auxiliary	  variable	  for	  <Φ>	  in	  FieldSplit	  
§  Create	  lineariza.on	  for	  precondi.oner	  matrix	  
•  Linearizing	  about	  phi=0	  

§  Use	  matrix	  free	  operator	  for	  nonlinear	  version	  of	  solver	  	  
•  Precondi.oned	  by	  linearized	  matrix	  

§  Use	  PETSc	  FieldSplit	  and	  MatNest	  object	  	  
§  Problem:	  <Φ>	  is	  global	  
•  small	  number	  ~	  O(102)	  and	  linear	  	  

§  Approach:	  	  compute	  explicit	  Schur	  complement	  
•  Block	  factoriza.on	  precondi.oner,	  non-‐itera.ve	  
•  Total	  solve	  .me	  ~2	  X	  Laplacian	  solve	  .me	  
•  But	  large	  setup	  cost	  that	  needs	  amor.zing	  
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FSA	  solver	  results	  

2.	  Hybrid	  fluid	  (MHD)	  electrons	  &	  kine7c	  ions	  

§  Second	  branch	  (EM),	  less	  expensive,	  no	  kine.c	  electrons	  
§  Evolve	  electron	  density	  with	  fluid	  formula.ons	  (cheaper)	  
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§  PETSc	  .me	  stepper	  (TS)	  with	  IMEX	  solve	  (some	  slow	  
terms	  moved	  to	  RHS)	  

§  2	  auxiliary	  equa.ons	  (for	  poten.al	  and	  current)	  
•  Verify	  w/	  reduced	  prob:	  fast	  wave	  &	  slow	  growth	  mode	  
•  Fully	  implicit	  
•  Again	  use	  PETSc	  Field	  split	  solvers	  
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very	  coarse	  
mesh	  to	  show	  

features	  

two	  	  	  
X-‐point	  
example	  

Showing	  flexibility	  
in	  mesh	  control	  

Old	  Itera.ve	  
solver	  
	  
Solu.on	  aNer	  
10,000	  
itera.ons	  
	  
384	  sec	  

New	  PETSc	  solver	  
	  
Solu.on	  aNer	  one	  
itera.on	  
	  
0.086	  sec	  

Explicit	  method	  
	  
100	  .me	  steps	  

Implicit	  method	  
	  
10	  .me	  steps	  
	  
10X	  dt	  


