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Motivation

• Historically, nuclear physics has 
relied on models.


• Nuclei are made of protons and 
neutrons, which in turn are made of 
quarks and gluons.


• We can use QCD to extract nucleon 
properties and interactions,


• connecting model parameters to 
the Standard Model.


• giving first-principles 
understanding.
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Nuclei as Laboratories

• There are observables that are hard to measure 
experimentally. 

• Nuclei provide a low-energy environment where 
high-precision “experiments” happen all the time.


• Can test many-body physics.


• Hadronic electroweak neutral current responsible 
for parity violation (PV) is the least constrained 
observable in the SM.


• Weak interaction is              
compared to strong interaction             .


• Nuclear data show enhanced isoscalar and 
suppressed isovector PV.

PV PV≠

⇠GFF
2
⇡=O(10�7)
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What is QCD?

• Quantum Chromodynamics is the fundamental theory of strong/
nuclear interactions (fusion, fission, α-decay, …) 

• QCD describes interactions between Quarks and Gluons 
 
 
 
 
 
 
     

• QCD features confinement (small energies) and asymptotic freedom 
(large energies)

g g g2

Quark-Gluon coupling 
(QED-like)

Gluon self-interaction
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QCD αs(Mz) = 0.1185 ± 0.0006
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0.1

0.2

0.3

αs (Q)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)

e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

Sept. 2013

Lattice QCD (NNLO)

(N3LO)

τ decays (N3LO)

1000

pp –> jets (NLO)
(–)

Figure 9.4: Summary of measurements of αs as a function of the energy scale Q.
The respective degree of QCD perturbation theory used in the extraction of αs is
indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to leading
order; res. NNLO: NNLO matched with resummed next-to-leading logs; N3LO:
next-to-NNLO).
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How to solve QCD?

• QCD is described by infinite 
dimensional integrals
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How to solve QCD?

• QCD is described by infinite 
dimensional integrals

• use (euclidian) 4D lattice as 
regulator

• generate configurations and 
extract observables

• perform limit a→0, L→∞ to 
recover continuum QCD

• but: tCPU~a-5
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How to solve QCD?

• QCD is described by infinite 
dimensional integrals

• use (euclidian) 4D lattice as 
regulator

• generate configurations and 
extract observables

• perform limit a→0, L→∞ to 
recover continuum QCD

• but: tCPU~a-5

• big computers needed
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Nuclear Physics from 
Bottom Up

• compute multi-nucleon 
correlation functions
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Nuclear Physics from 
Bottom Up

• compute multi-nucleon 
correlation functions

• measure energy difference 
between interacting and non-
interacting system
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Nuclear Physics from 
Bottom Up

• compute multi-nucleon 
correlation functions

• measure energy difference 
between interacting and non-
interacting system

• use Lüscher’s finite volume 
formula to relate measured 
energies to phase shifts δ(k)
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Nuclear Physics from 
Bottom Up

• compute multi-nucleon 
correlation functions

• measure energy difference 
between interacting and non-
interacting system

• use Lüscher’s finite volume 
formula to relate measured 
energies to phase shifts δ(k)

• compute low energy 
observables from effective 
range expansion
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• number of contractions/
diagrams grows 
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Challenges

• number of contractions/
diagrams grows 
combinatorially

• Baryon blocks

• use automatic code 
generation

• calculating the contractions is 
expensive: use GPUs

X

µ,⌫,A,B

Pµ⌫ B
µ
A B⌫

B LAB = vTMv
vector-Matrix-vector product

p[tid] = v[I1[tid]] * M[tid] * v[I2[tid]];

p
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• number of contractions/
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Lepage Argument

• signal-to-noise ratio of 
correlation functions

• numerator 
 
 
 

• denominator 
 
 

• time-dependence of SNR
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Parity Violation - Contractions Δ!=2

• 2 Baryon s-wave source

• EW vertices ⇒ 4-quark operator insertion

• 2 Baryon p-wave sink

• In total there are 4896 contractions.

• Degenerate light quarks reduce this to 2208.

• Requires 15 tensors.

• 2 baryon blocks & 1 four-quark object



Source and Sink 
Construction

• use of momentum sources and 
sinks (non-local in coordinate 
space) would be optimal

FIG. 20: The momentum-space representations (left) and position-space representations (right) of
two-body relative states in the T�

1

representation with Lz = 0 for the |n|2 = 1, 2, 3-shells.
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Source and Sink 
Construction

• use of momentum sources and 
sinks (non-local in coordinate 
space) would be optimal

• we use coordinate-space 
sources (and sinks) instead

• mix different lattice irreducible 
representations ⇒ excited states

• rotational symmetry breaking: 
mixing of different continuum 
multiplets

L=0, Lz=0

L=1, Lz=+1,0,-1

L=4,6, …

L=3,5, …



Preliminary Results:  
	 Partial Wave Scattering at mπ=800 MeV
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Preliminary Results:  
	 Parity Violation Matrix Element at mπ=800 MeV

Preliminary! 
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Preliminary Results:  
	 Parity Violation Matrix Element at mπ=800 MeV
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HOBET:  Connecting a non-relativistic effective 
theory to the lattice

• Idea: Build an effective theory that can utilize lattice input to fix parameters 
that are unknown, while taking other parameters from experiment


• This includes utilizing either experiment or lattice input on the NN  
interaction to predict properties of light nuclei


• HOBET is a true ET:  the effective interaction is constructed directly in the 
soft — or “included” — P-space


• Usual nuclear physics approach: 
QCD ➝  singular NN potential  ➝  P-space effective interaction


• HOBET:   QCD ➝  P-space effective interaction


• The difficult effective interactions problem is avoided


• How is this done? HOBET’s unique infra-red/ultraviolet separation allows 
us to utilize NN phase shifts to fix ET parameters



Simplified analytic example:  hard-core s-wave interaction, chosen to  
                                               reproduce deuteron binding energy
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Simplified analytic example:  hard-core s-wave interaction, chosen to  
                                               reproduce deuteron binding energy

0 
∼ -50 MeV

∼ 2 GeV

finely tuned: deuteron 
is bound by 2.22 MeV

P is the soft ET space 
Q=1-P 
H = T+V 
!
use the Haxton/Luu factorization 
of the Bloch-Horowitz equation 
!

HET = P
E

E � TQ


T � T

Q

E
T + V + V�

�
E

E �QT
P

short-range operator that corrects 
for the effects of V  acting outside P:  
can be efficiently expanded in 
terms of contact operators



The BH equation must be solved self-consistently:   
!
So one picks an E, supplies δ(E), calculates              , diagonalizes in P 
!
A solution must exist at every E>0 
!
But the diagonalization does not give an eigenvalue at E 
!
Thus we “dial”       - this can be done order-by-order to reproduce δ(E) over 
a range of E 
!
Through NNLO: 
!
!
!
!
The larger the range in E over which δ(E) is fit, the more terms needed 
!
Phase shifts yield the deuteron binding energy, in a calculation limited to P
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Low-energy constants become constant, as higher orders are included 



For       = 0  the predicted binding energy is -0.68 MeVV�



CalLat is applying these techniques to the parity-violating asymmetry in    
!
Ongoing SNS experiment to measure the neutral current in the hadronic  
          weak interaction (see poster) 
!
We will use HOBET + lattice to fully determine this system, and to 
relate this observable to other parity-violating observables 
!
Experimental strong phase shifts:  fix all strong interaction low-energy  
                                                       constants 
!
Lattice: provides the experimentally unknown parameter — 
             the parity-violating weak phase shift

n+ p ! D + �



Conclusions

• Nuclear physics can be done on the Lattice 

• Baryon blocks and tensors tame Wick Contractions  
⇒ automatic code generation, parallelization (GPUs) 

• sophisticated, expensive non-local sources/sinks for higher partial 
waves ⇒ treating excited states effects 

• exponential decrease of SNR ⇒ large mπ, huge 
statistics (MG), huge amount of data to store (HDF5) 

• preliminary higher partial wave and PV results look promising, but 
might need to disentangle angular momentum multiplets



Conclusions

• Expected computational costs: 

• mπ↓: inversions⬆, SNR⬇ 

• L↑: inversions↑, FFT⬆, contractions↑, SNR↑ 

• feed lattice results into HOBET ⇒ solve complex nuclear 
systems



Thank You


