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Motivation

- Historically, nuclear physics has Liquid Drop Shell

relied on models.

- Nuclei are made of protons and
neutrons, which in turn are made of
quarks and gluons.

« We can use QCD to extract nucleon
properties and interactions,

Mean Field Potentials QCD
» connecting model parameters to

the Standard Model. |
L=y6ED+m)y — ZTlr(F2)

* giving first-principles
understanding.



Nuclel as Laboratories

* There are observables that are hard to measure
experimentally.

* Nuclei provide a low-energy environment where
high-precision “experiments” happen all the time.

« Can test many-body physics.

- Hadronic electroweak neutral current responsible PV i vq

for parity violation (PV) is the least constrained
observable in the SM.

. Weak interaction is ~GpEF2=0(10"7)
compared to strong interaction ~O(1).

 Nuclear data show enhanced isoscalar and
suppressed isovector PV.



What is QCD?

+ Quantum Chromodynamics is the fundamental theory of strong/
nuclear interactions (fusion, fission, a-decay, ...)

- QCD describes interactions between Quarks and Gluons

2

g g g
Quark-Gluon coupling Gluon self-interaction
(QED-like)

e QCD features confinement (small energies) and asymptotic freedom
(large energies)
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How to solve QCD?

- QCD is described by infinite 75 = DU D) D) eXp —S U] — d%zﬁ(x)D[UW(x)
dimensional integrals

- use (euclidian) 4D lattice as
regulator

* generate configurations and
extract observables
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How to solve QCD?

- QCD is described by infinite 75 = DU D) D eXp —S,[U] — d4a:zﬁ(:c)D[U]¢(a:)
dimensional integrals

- use (euclidian) 4D lattice as
regulator

* generate configurations and
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How to solve QCD?

- QCD is described by infinite  z; = /DUM Dy D) exp (SQ[U] _ /d4x¢(x)D[U]¢(a;)>

dimensional integrals R4

- use (euclidian) 4D lattice as = /DUM D¢ D¢ exp (Sg[U] - /d4af ¢T(x)D[@($))
regulator R* /
expensive matrix inversions
* generate configurations and \
extract observables —

S(x,y) = ¥(@)(y) = DU Az, y)
- perform limit a—0, L= to
recover continuum QCD

- but: tcpy~a™



How to solve QCD?

QCD is described by infinite
dimensional integrals

use (euclidian) 4D lattice as
regulator

generate configurations and
extract observables

perform limit a—0, L2 to
recover continuum QCD

but: tcpu~a™

big computers needed




Nuclear Physics from _
Sottom Up single Nucleon

@;@ 2111=2

- compute multi-nucleon
correlation functions

deuteron
3131=36

Hes-scattering  5!41=2880



Nuclear Physics from
Sottom Up

compute multi-nucleon
correlation functions

measure energy difference
between interacting and non-
interacting system
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Nuclear Physics from
Sottom Up

- compute multi-nucleon
correlation functions

- measure energy difference
between interacting and non-
interacting system

- use Luscher’s finite volume
formula to relate measured
energies to phase shifts o(k)
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Nuclear Physics from
Sottom Up

- compute multi-nucleon
correlation functions

- measure energy difference
between interacting and non-
interacting system

- use Luscher’s finite volume
formula to relate measured
energies to phase shifts o(k)
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Nuclear Physics from
Sottom Up

- compute multi-nucleon
correlation functions

- measure energy difference
between interacting and non-
interacting system

- use Luscher’s finite volume
formula to relate measured
energies to phase shifts o(k)

- free theory

AE — k2 2 (k)



Nuclear Physics from |
Sottom Up 35

- compute multi-nucleon
correlation functions 2.5F =
- free theory

- measure energy difference
between interacting and non-
interacting system

- use Luscher’s finite volume
formula to relate measured
energies to phase shifts o(k)

- compute low energy
observables from effective
range expan3|on

K2 cot 5 (k2) = —— + "“z k2 4 Z n+1Pl(n) [.2n+4
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Challenges

number of contractions/
diagrams grows
combinatorially

Baryon blocks

BH

recompute for every
new measurement

compute once,
store to disk




Challenges

number of contractions/
diagrams grows
combinatorially

Baryon blocks

use automatic code
generation

PP = Proton[sink] [xf, u] ** bar[Proton[source] [xi, v]] ** SpinProjector[Same, Spin[v, ul]];

contractions = Contract [pp];
Notation[contractions]
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Challenges

- number of contractions/
diagrams grows
combinatorially

- Baryon blocks

* use automatic code
generation
PP = Proton[sink] [xf, u] ** bar[Proton[source] [xi, v]] ** SpinProjector[Same, Spin[v, ul]];

contractions = Contract [pp];
Notation[contractions]

Same,, CYys,++ ,+ C¥s,. ,» S[down, xf - xi1%% 8[up, xE x1];f S [up, xf-—x1]§3 g B e gAbe
Same,, C¥s,+ ,+ C¥s,: ,» S[down, xf - xi]22.. S[up, xf - xi]3,*  S[up, xf ®i] s gF W W LN

Generate [BaryonBlocks] [contractions] // Notation

-BaryonBlock[Color [b, d, £], Flavor[down, up, up], SpaceTime[xf, {xi, xi, xi}], Spin[e, B, &, ¢]]
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Challenges

number of contractions/
diagrams grows
combinatorially

Baryon blocks

use automatic code
generation

- calculating the contractions is
expensive: use GPUs

Y  Pu B, BiLap=v Mv
M7V7A7B

p[tid]

= v[I1[tid]] * M[tid] * v[I2[tid]l];

vector-Matrix-vector product
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Challenges

number of contractions/
diagrams grows
combinatorially

Baryon blocks

use automatic code
generation

- calculating the contractions is
expensive: use GPUs

- excited states contributions:
sink/source engineering

Ecf(t/a)
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34 r
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28 r
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C(t,tg) =

i Z:Zn e~ mn(t—to)

n=0

Kt

t/a

use sources/sinks with
spatially displaced nuclei



Challenges

Clt,to) = Y ZpZye mrit—to)

number of contractions/ . n=0
diagrams grows :
combinatorially 34T
3.2 | "
Baryon blocks
T ST ]
use automatic code i{s . : *
generation | ]
2.6 | i ) x
- calculating the contractions is s T e s
expensive: use GPUs ol R N A % %
2.2 '
- excited states contributions: 0 2 4 6 & 10 12 14

t/a
use sources/sinks with

spatially displaced nuclei

sink/source engineering

Lepage argument



Lepage Argument

- signal-to-noise ratio of
correlation functions
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Lepage Argument

- signhal-to-noise ratio of
correlation functions

- numerator
~ exp(—mnt)

- denominator

S
~ exp —§mﬁt




Lepage Argument

- signal-to-noise ratio of SNR ~ <NN>

correlation functions \/<(NN) (NN)U _ <NN>2
* numerator B

~ exp(—mnyt) e

- denominator

~ exp (—gmﬂt) — It

- time-dependence of SNR — E——— |

3 huge statistics needed (MG)
~ VN exp [—A (m N — §mw> t]-’ huge amount of storage needed (HDF))
large pion mass



Parity Violation - Contractions A1=2

- 2 Baryon s-wave source
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Parity Violation - Contractions AL=2

- 2 Baryon s-wave source

- EW vertices = 4-quark operator insertion

« 2 Baryon p-wave sink

* |n total there are 4896 contractions.

« Degenerate light quarks reduce this to 2208.

- Requires 15 tensors.

2 baryon blocks & 1 four-quark object



Source and Sink
Construction

use of momentum sources and
sinks (non-local in coordinate
space) would be optimal
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77 =1L =0

Source and Sink
Construction

use of momentum sources and
sinks (non-local in coordinate
space) would be optimal

7 =2 : L, =0

we wish to use: N(p) =) e"q1(z) q(x) gs(x)
we are limited to: N’ (p; p1,p2) = Z eP1T1 G (1) €222 gy (29) € PTPITP2)T3 g0 (124)

L1,X2,T3



Source and Sink
Construction =0, L,=0

- use of momentum sources and .
sinks (non-local in coordinate
space) would be optimal

- We use coordinate-space

d sinks) inst
sources (and sinks) instead =1 Ly=t1.0.-1




Source and Sink
Construction =0, L,=0
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space) would be optimal

- We use coordinate-space
sources (and sinks) instead
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- mix different lattice irreducible
representations = excited states




Source and Sink
Construction =0, L,=0

- use of momentum sources and .
sinks (non-local in coordinate
space) would be optimal

L=4,6, ...
- We use coordinate-space
sources (and sinks) instead
( ) L=1, L.=+1,0,-1
- mix different lattice irreducible
representations = excited states

- rotational symmetry breaking:
mixing of different continuum
multiplets =35




Preliminary Results:
Partial Wave Scattering at mr=800 MeV
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Preliminary Results:
Parity Violation Matrix Element at mr=800 MeV

Raw Correlator
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Preliminary Results:
Parity Violation Matrix

—lement at mr=800 MeV
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HOBET: Connecting a non-relativistic effective
theory to the lattice

- Idea: Build an effective theory that can utilize lattice input to fix parameters
that are unknown, while taking other parameters from experiment

 This includes utilizing either experiment or lattice input on the NN
interaction to predict properties of light nuclei

- HOBET is a true ET: the effective interaction is constructed directly in the
soft — or “included” — P-space

 Usual nuclear physics approach:
QCD — singular NN potential — P-space effective interaction

- HOBET: QCD — P-space effective interaction

- The difficult effective interactions problem is avoided

- How is this done? HOBET’s unique infra-red/ultraviolet separation allows
us to utilize NN phase shifts to fix ET parameters



Simplified analytic example: hard-core s-wave interaction, chosen to
reproduce deuteron binding energy

~ 2 GeV
finely tuned: deuteron P is the soft ET space
is bound by 2.22 MeV Q=1-P
H=T+V
use the Haxton/Luu factorization
of the Bloch-Horowitz equation
E Q E
= —1T'=T P
Her PE—TQ T I +V 4+ Vs E_—OT
O B o I

~ -50 MeV



Simplified analytic example: hard-core s-wave interaction, chosen to
reproduce deuteron binding energy

~ 2 GeV
finely tuned: deuteron P is the soft ET space
IS bound by 2.22 MeV Q=1-P
H=T+V

use the Haxton/Luu factorization
of the Bloch-Horowitz equation

E Q E
Hpr =P I'-T=T+V +V, P
ET E—TQ[ i +V 4+ Vs E—OT

O beeeebereniiiiiiiiiiiiiiiiiiiiiin, E— |
~ -50 MeV b

sums kinetic energy T to all orders

outgoing solution for a specific E
depends on the phase shift 6(E)



Simplified analytic example: hard-core s-wave interaction, chosen to
reproduce deuteron binding energy

~ 2 GeV

~ -50 MeV

finely tuned: deuteron
IS bound by 2.22 MeV

P is the soft ET space
Q=1-P
H=T+V

use the Haxton/Luu factorization
of the Bloch-Horowitz equation

E Q) E
E_TO [T—T—T—I—V—I—V(s] E_OT

o/

short-range operator that corrects
for the effects of V acting outside P:
can be efticiently expanded in
terms of contact operators

P



The BH equation must be solved self-consistently: Hgr = Hgr(E)

So one picks an E, supplies 6(E), calculates Hgr(F), diagonalizes in P
A solution must exist at every E>0

But the diagonalization does not give an eigenvalue at E

Thus we “dial” V5 - this can be done order-by-order to reproduce 6(E) over
arange of E

Through NNLO:

2 —2 1 2 —2 9 4 B B —4
Vs = azod(F) + an o (v 5(7) + 5(7) ) falnio V6 Y +a%nio (v 6<r>+6<r>v)

The larger the range in E over which &(E) is fit, the more terms needed

Phase shifts yield the deuteron binding energy, in a calculation limited to P



Low-energy constants become constant, as higher orders are included

Energy Dependence of Alo
Alo
— MeV
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For Vs = 0 the predicted binding energy is -0.68 MeV

Bound State Energy vs ET Order, A=10
MeV
- Order
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CallLat is applying these technigues to the parity-violating asymmetry in
n+p—D-+~
Ongoing SNS experiment to measure the neutral current in the hadronic
weak interaction (see poster)

We will use HOBET + lattice to fully determine this system, and to
relate this observable to other parity-violating observables

Experimental strong phase shifts: fix all strong interaction low-energy
constants

Lattice: provides the experimentally unknown parameter —
the parity-violating weak phase shitt



Conclusions

Nuclear physics can be done on the Lattice

Baryon blocks and tensors tame Wick Contractions
= automatic code generation, parallelization (GPUS)

- sophisticated, expensive non-local sources/sinks for higher partial
waves = treating excited states effects

- exponential decrease of SNR = large my, huge
statistics (MG), huge amount of data to store (HDF5)

- preliminary higher partial wave and PV results look promising, but
might need to disentangle angular momentum multiplets



Conclusions

- Expected computational costs:

- mnd:inversions®, SNR4$
+ LT:inversionsT, FFT 4, contractions®, SNRT

- feed lattice results into HOBET = solve complex nuclear

Systems
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