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Node Level Parallelism in BerkeleyGW 1.1 

Collaborators 

On Node Parallelism 

•  Improve the scalability of GW implementations to massively parallel 
DOE machines – utilizing both inter- and intra-node parallelism 

Impact 

Developers: 
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•  Substantial speedups throughout package from IO (next panel) 
OpenMP and vectorization. 

Motivation 

BerkeleyGW 1.1 vs 1.0 

•  BerkeleyGW was 2.2% of the entire 
NERSC workload in the first 8 months of 
2013. Compared to 1.2% in 2012. 

•  Users Study: photovoltaics, 
Interpretation of DOE Light-Source 
photoemission spectra, LED, Electronic, 
transport, and optical properties of 
novel 

Improved Interpolation Schemes 

Collaborators 

Interpolation of the Bethe-Salpeter Equation 

•  Excitons are correlated electron-hole pairs which can be predicted 
from the solutions of the Bethe-Salpeter equation (BSE). 

•  Because of their correlated nature, it’s necessary to use interpolation 
schemes to solve the BSE. 

Delaunay Tessellation 
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•  In BerkeleyGW, we calculate the Kernel of the BSE on a coarse grid 
and interpolate them using the projection between wave functions the 
coarse and fine grids. 

•  We implemented space decomposition 
algorithms and caching techniques to 
speedup the interpolation: over 104 
speedup for  graphene. 

Ongoing and Future Works 

•  Improve the interpolation of the dielectric matrix, which is ill-behaved 
for systems with reduced dimensionality. 

•  Support interpolation of kernels generated without the Tamm-Dancoff 
approximation (partially implemented) 

Motivation 

Improvements in BerkeleyGW 

Parallel IO 

•  For large systems run at scale on DOE supercomputers, IO has 
become a major bottleneck in BerkeleyGW Performance. 

•  We overcome this bottleneck with parallel-IO using DOE supported 
HDF5 libraries. 

Support for Many-Core Architectures 

•  IO improved from 90 MB/sec to > 2 GB/sec 

•  Average write size increased by orders of magnitude 

•  Utilize DOE supported parallel HDF5 libraries and Lustre 
filesystems features: striping across multiple disks 

Ongoing and Future Works 
•  Parallel IO for more files formats (wavefunctions) 

•  Support of GPUs 

•  Collaboration with Intel engineers to ensure vectorization, optimization 

Motivation 
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BGW 1.0 IO Signature 

BGW 1.1 IO Signature 

•  2X – 10X performance 
improvement throughout 
Package 

 Hybrid OpenMP/MPI model 
added to support current and 
next-generation DOE 
machines.  

 New efficient algorithms to 
reduce complexity. DFT orbital 
requirements reduced 5x. 

Sigma Performance 

Epsilon Performance 

Rev 4770: Initial Code 

Rev 4896: Refactor code to have loops targeting MPI, OpenMP, SIMD 

Rev 5338: OpenMP Pragmas added 

Rev 5349: Vectorization Ensured 

•  In order to obtain smooth 
interpolated band structures, we 
implemented an algorithm that first 
tessellates the k-points based on 
Delaunay triangulation. This removes 
interpolation discontinuities. 
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Old interpolation algorithm New algorithm 

Delaunay tessellation of an 
inhomogeneous k-mesh. 

Dimension reduction techniques for the GW self energy approximation 

Observation 

Motivation 

Numerical results for a methane molecule 

Truncation 
level 

Our 
approach 

Galli’s 
approach 

2205 0.16E-15          0.80E-14 
2000 0.44E-07          0.48E-07 
1000 0.18E-05          0.10E-05 
200 0.11E-03          0.22E-03 
100 0.44E-03          0.11E-02 
50 0.15E-02          0.38E-02 
20 0.52E-02          0.14E-01 


