Recent and ongoing developments and applications of TDDFT for large molecular and materials systems

Real-Time (RT) TDDFT Approach

Explicit propagation of the time-dependent Kohn-Sham (KS) equations in time.

The second order Magnus propagator:

$$\mathbf{P}'(t + \Delta t) = e^{-i\mathbf{F}'(t + \Delta t/2)\Delta t} \mathbf{P}'(t) e^{i\mathbf{F}'(t + \Delta t/2)\Delta t}$$

All electronic modes are induced simultaneously with a narrow Gaussian electric field kick

$$\mathbf{E}(t) = \kappa \exp\left[\frac{-(t-t_0)^2}{2w^2}\right]\hat{d}$$

The applied field excites the system through a dipole coupling term added to the Fock matrix

$$\mathbf{V}_{\mu\nu}^{\text{app}}(t) = -\mathbf{D}_{\mu\nu} \cdot \mathbf{E}(t)$$
$$\mathbf{D}_{\mu\nu}^{x} = \int \phi_{\mu}^{*}(\mathbf{r}) x \phi_{\nu}(\mathbf{r}) d\mathbf{r}$$

Pros:

+ Efficient implementation of a wide range of functionals within RT-TDDFT scheme

+ Only requires first derivatives of the exchange-correlation functionals

- + Can be used as a diagnostic for potential-driven DFT
- + Wide range absorption spectrum and for spectra involving high density of states + Non-linear optical properties
- + Real-time dynamics
- + Resonant excitation simulations
- + Efficient for large systems

Cons:

- Time consuming for small systems

Computational Details

NWChem 6.3/dev and **Gaussian 09 (linear response results for meta functionals)** 8 density functionals were tested

3 local functionals: BLYP, M06L and M11L with dual-range DFT exchange;

3 global hybrid functionals: B3LYP, M06 and M06-2X with 20, 27 and 54% of Hartree-Fock (HF) exchange, respectively; 2 range-separated hybrid functional CAM-B3LYP and M11, comprising 19 and 42.8% HF exchange in the short-range and 65 and 100% in the long-range, respectively.

Ground state DFT calculations: tight density convergence to avoid numerical error accumulation: RMS difference less than 10⁻⁹.

Geometry optimization at B3LYP/6-31G* for dyes 1-10, P3B2 and f-coronene BHLYP-D3/def2-SVP (11) and B3LYP/def2-SVP (12)

Real-time TDDFT simulations: B3LYP/6-31G*

 $\Delta t = 0.2$ au = 0.0048 fs, t=1000 au = 24.2 fs or N=5000 time steps. δ -kick with κ =2·10⁻⁵ au = 10 mV/nm, peaks were broadened by artificially damping the time signal by $e^{-t/\tau}$, where $\tau = 200$ au = 6 fs before taking the Fourier transform.

Samat Tussupbayev,¹ Niranjan Govind,² Chao Yang³, Christopher J. Cramer¹

¹ Department of Chemistry and Supercomputing Institute, University of Minnesota, ²William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, ³Computational Research Division, Lawrence Berkeley National Laboratory

Dye Benchmark

2,3,5-trifluorobenzaldehyde (1), dibenzonaphthyridindione (2), coronene (3), coumarin 153 (4), 4'-hydroxybenzylidene-2,3-dimethylimidazoline (5), indigo (6), naphtacene (7), oligoporphyrin dimer (8), phtalocyanine (9), zinc phthalocyanine (10), 3',4'-dibutyl-2-phenyl-2,2':5',2"-terthiophene-5"-carboxylic acid (11), cis-[Ru(4,4'- $COOH-2,2'-bpy)_2(NCS)_2$ complex or N3 (12).

1 3.75 4.31 4.69 4.04 4.40 4.83 4.15 4.88 3.73 4.30 4.69 4.03 4.38 4.81 4.15 4.87 2 2.70 3.11 3.55 2.89 3.23 3.53 2.86 3.74 2.69 3.10 3.53 2.89 3.22 3.52 2.86 3.67 3 3.75 4.15 4.66 3.95 4.20 4.63 3.87 4.91 4 2.95 3.36 3.78 3.16 3.43 3.76 3.11 3.98 2.94 3.36 3.76 3.15 3.44 3.76 3.13 3.91 5 3.25 3.54 3.79 3.46 3.58 3.78 3.42 3.86 6 2.04 2.30 2.59 2.20 2.40 2.57 2.18 2.66 2.04 2.30 2.59 2.20 2.40 2.57 2.18 <td< th=""><th></th><th>BLYP*</th><th>B3LYP</th><th>CAM- B3LYP</th><th>M061</th><th>M06</th><th>M06- 2X</th><th>M11L</th><th>M11</th></td<>		BLYP*	B3LYP	CAM- B3LYP	M061	M06	M06- 2X	M11L	M11
3.73 4.30 4.69 4.03 4.38 4.81 4.15 4.87 2 2.70 3.11 3.55 2.89 3.23 3.53 2.86 3.74 2.69 3.10 3.53 2.89 3.22 3.52 2.86 3.67 3 3.75 4.15 4.66 3.95 4.20 4.63 3.87 4.91 4 2.95 3.36 3.78 3.16 3.43 3.76 3.11 3.98 2.94 3.36 3.76 3.15 3.44 3.76 3.13 3.91 5 3.25 3.54 3.79 3.47 3.57 3.78 3.42 3.86 6 2.04 2.30 2.59 2.20 2.40 2.57 2.18 2.66 2.04 2.30 2.59 2.20 2.40 2.57 2.18 2.64 7 2.21 2.49 2.84 2.32 2.50 2.86 2.23	1	3.75	4.31	4.69	4.04	4.40	4.83	4.15	4.88
2 2.70 3.11 3.55 2.89 3.23 3.53 2.86 3.74 2.69 3.10 3.53 2.89 3.22 3.52 2.86 3.67 3 3.75 4.15 4.66 3.95 4.20 4.63 3.87 4.91 3.74 4.15 4.65 3.94 4.19 4.63 3.87 4.91 4 2.95 3.36 3.78 3.16 3.43 3.76 3.11 3.98 2.94 3.36 3.76 3.15 3.44 3.76 3.13 3.91 5 3.25 3.54 3.79 3.47 3.57 3.78 3.42 3.86 6 2.04 2.32 2.61 2.21 2.41 2.58 2.18 2.66 2.04 2.30 2.59 2.20 2.40 2.57 2.18 2.64 7 2.21 2.49 2.85 2.32 2.49 2.86 2.23		3.73	4.30	4.69	4.03	4.38	4.81	4.15	4.87
2.69 3.10 3.53 2.89 3.22 3.52 2.86 3.67 3 3.75 4.15 4.66 3.95 4.20 4.63 3.87 4.91 3.74 4.15 4.65 3.94 4.19 4.63 3.87 4.91 4 2.95 3.36 3.78 3.16 3.43 3.76 3.11 3.98 2.94 3.36 3.76 3.15 3.44 3.76 3.13 3.91 5 3.25 3.54 3.79 3.47 3.57 3.78 3.42 3.86 6 2.04 2.32 2.61 2.21 2.41 2.58 2.18 2.64 7 2.21 2.49 2.84 2.32 2.60 2.57 2.18 2.64 7 2.21 2.49 2.85 2.32 2.40 3.00 2.93 3.01 8 2.07 2.41 3.06 2.16 2.44 3.00 2.9	2	2.70	3.11	3.55	2.89	3.23	3.53	2.86	3.74
3 3.75 4.15 4.66 3.95 4.20 4.63 3.87 4.91 3.74 4.15 4.65 3.94 4.19 4.63 3.87 4.91 4 2.95 3.36 3.78 3.16 3.43 3.76 3.11 3.98 2.94 3.36 3.76 3.15 3.44 3.76 3.13 3.91 5 3.25 3.54 3.79 3.47 3.57 3.78 3.42 3.86 6 2.04 2.32 2.61 2.21 2.41 2.58 2.18 2.66 2.04 2.30 2.59 2.20 2.40 2.57 2.18 2.64 7 2.21 2.49 2.84 2.32 2.50 2.86 2.23 3.06 8 2.07 2.41 3.06 2.16 2.49 2.86 2.23 3.06 9 1.99 2.41 3.06 2.16 2.46 3.02 2.1		2.69	3.10	3.53	2.89	3.22	3.52	2.86	3.67
3.74 4.15 4.65 3.94 4.19 4.63 3.87 4.91 4 2.95 3.36 3.78 3.16 3.43 3.76 3.11 3.98 2.94 3.36 3.76 3.15 3.44 3.76 3.13 3.91 5 3.25 3.54 3.79 3.47 3.57 3.78 3.42 3.86 6 2.04 2.32 2.61 2.21 2.41 2.58 2.18 2.66 2.04 2.30 2.59 2.20 2.40 2.57 2.18 2.64 7 2.21 2.49 2.84 2.32 2.50 2.86 2.23 3.06 8 2.07 2.41 3.06 2.16 2.49 2.86 2.23 3.06 9 1.99 2.08 2.07 2.05 2.02 2.11 1.99 1.98 1.96 2.06 1.99 2.06 2.02 2.11 1.99	3	3.75	4.15	4.66	3.95	4.20	4.63	3.87	4.91
4 2.95 3.36 3.78 3.16 3.43 3.76 3.11 3.98 2.94 3.36 3.76 3.15 3.44 3.76 3.13 3.91 5 3.25 3.54 3.79 3.47 3.57 3.78 3.42 3.87 3.25 3.54 3.79 3.46 3.58 3.78 3.42 3.86 6 2.04 2.32 2.61 2.21 2.41 2.58 2.18 2.66 2.04 2.30 2.59 2.20 2.40 2.57 2.18 2.64 7 2.21 2.49 2.84 2.32 2.50 2.86 2.23 3.06 8 2.07 2.41 3.06 2.16 2.46 3.02 2.13 3.28 9 1.99 2.08 2.07 2.05 2.04 2.00 2.07 1.98 1.91 1.96 2.06 1.99 2.05 2.04 2.00 2.07 1.98 1.91 1.99 2.00 10 1.99 2.06<		3.74	4.15	4.65	3.94	4.19	4.63	3.87	4.91
2.94 3.36 3.76 3.15 3.44 3.76 3.13 3.91 5 3.25 3.54 3.79 3.47 3.57 3.78 3.42 3.87 3.25 3.54 3.79 3.46 3.58 3.78 3.42 3.86 6 2.04 2.32 2.61 2.21 2.41 2.58 2.18 2.66 2.04 2.30 2.59 2.20 2.40 2.57 2.18 2.64 7 2.21 2.49 2.84 2.32 2.50 2.86 2.24 3.06 2.20 2.49 2.85 2.32 2.49 2.86 2.23 3.06 8 2.07 2.41 3.06 2.16 2.46 3.02 2.13 3.28 9 1.99 2.08 2.07 2.05 2.04 3.00 2.09 3.11 3.28 19 1.96 2.06 1.99 2.05 2.02 2.11 1.99 1.98 1.91 1.96 2.06 1.99 2.06 2.	4	2.95	3.36	3.78	3.16	3.43	3.76	3.11	3.98
5 3.25 3.54 3.79 3.47 3.57 3.78 3.42 3.87 3.25 3.54 3.79 3.46 3.58 3.78 3.42 3.86 6 2.04 2.32 2.61 2.21 2.41 2.58 2.18 2.66 2.04 2.30 2.59 2.20 2.40 2.57 2.18 2.64 7 2.21 2.49 2.84 2.32 2.50 2.86 2.24 3.06 2.00 2.49 2.85 2.32 2.49 2.86 2.23 3.06 8 2.07 2.41 3.06 2.16 2.46 3.02 2.13 3.28 9 1.99 2.08 2.07 2.05 2.00 2.09 3.11 3.28 9 1.99 2.08 2.07 2.05 2.02 2.11 1.99 1.98 1.96 2.06 1.99 2.06 2.02 2.11 1.99		2.94	3.36	3.76	3.15	3.44	3.76	3.13	3.91
3.25 3.54 3.79 3.46 3.58 3.78 3.42 3.86 6 2.04 2.32 2.61 2.21 2.41 2.58 2.18 2.66 7 2.21 2.49 2.59 2.20 2.40 2.57 2.18 2.64 7 2.21 2.49 2.84 2.32 2.50 2.86 2.24 3.06 2.20 2.49 2.85 2.32 2.49 2.86 2.23 3.06 8 2.07 2.41 3.06 2.16 2.46 3.02 2.13 3.28 9 1.99 2.40 3.04 2.17 2.44 3.00 2.09 3.11 3.28 2.05 2.40 3.04 2.17 2.44 3.00 2.09 3.11 9 1.99 2.06 1.99 2.04 2.00 2.07 1.98 1.91 1.99 2.09 2.05 2.06 2.02 2.11 1.99 1.99 10 1.99 2.09 2.04 2.06 2.02<	5	3.25	3.54	3.79	3.47	3.57	3.78	3.42	3.87
6 2.04 2.32 2.61 2.21 2.41 2.58 2.18 2.66 2.04 2.30 2.59 2.20 2.40 2.57 2.18 2.64 7 2.21 2.49 2.84 2.32 2.50 2.86 2.24 3.06 2.20 2.49 2.85 2.32 2.49 2.86 2.23 3.06 8 2.07 2.41 3.06 2.16 2.46 3.02 2.13 3.28 2.05 2.40 3.04 2.17 2.44 3.00 2.09 3.11 9 1.99 2.08 2.07 2.05 2.02 2.11 1.99 1.98 1.96 2.06 1.99 2.04 2.00 2.07 1.98 1.91 2.00 10 1.99 2.10 2.06 2.07 2.02 2.11 1.99 1.99 2.00 10 1.99 2.09 2.04 2.06 2.02 2.11 1.99 1.99 1.99 2.09 2.04 2.06 2		3.25	3.54	3.79	3.46	3.58	3.78	3.42	3.86
2.04 2.30 2.59 2.20 2.40 2.57 2.18 2.64 7 2.21 2.49 2.84 2.32 2.50 2.86 2.24 3.06 2.20 2.49 2.85 2.32 2.49 2.86 2.23 3.06 8 2.07 2.41 3.06 2.16 2.46 3.02 2.13 3.28 2.05 2.40 3.04 2.17 2.44 3.00 2.09 3.11 2.05 2.40 3.04 2.17 2.44 3.00 2.09 3.11 9 1.99 2.08 2.07 2.05 2.02 2.11 1.99 1.98 1.96 2.06 1.99 2.04 2.00 2.07 1.98 1.91 1.99 2.09 2.05 2.06 2.02 2.11 1.99 1.99 1.0 1.99 2.09 2.04 2.06 2.02 2.11 1.99 1.99 1.99 2.09 2.04 2.06 2.02 2.11 1.99 1.98 <	6	2.04	2.32	2.61	2.21	2.41	2.58	2.18	2.66
7 2.21 2.49 2.84 2.32 2.50 2.86 2.24 3.06 8 2.20 2.49 2.85 2.32 2.49 2.86 2.23 3.06 8 2.07 2.41 3.06 2.16 2.46 3.02 2.13 3.28 2.05 2.40 3.04 2.17 2.44 3.00 2.09 3.11 9 1.99 2.08 2.07 2.05 2.04 3.00 2.09 3.11 1.96 2.06 1.99 2.05 2.05 2.02 2.11 1.99 1.98 1.96 2.06 1.99 2.05 2.06 2.07 2.12 1.98 1.91 1.99 2.09 2.05 2.06 2.02 2.11 1.99 1.99 1.91 1.99 2.09 2.04 2.06 2.02 2.11 1.99 1.99 1.99 2.09 2.04 2.06 2.02 2.11 1.99 1.98 1.99 2.09 2.04 2.06 2.02 <		2.04	2.30	2.59	2.20	2.40	2.57	2.18	2.64
2.20 2.49 2.85 2.32 2.49 2.86 2.23 3.06 8 2.07 2.41 3.06 2.16 2.46 3.02 2.13 3.28 2.05 2.40 3.04 2.17 2.44 3.00 2.09 3.11 9 1.99 2.08 2.07 2.05 2.02 2.11 1.99 1.98 1.96 1.99 2.06 1.99 2.04 2.00 2.07 2.07 1.98 1.91 1.96 2.09 2.09 2.05 2.04 2.00 2.07 1.98 1.91 1.99 2.09 2.05 2.06 2.02 2.11 1.99 1.99 1.99 2.09 2.05 2.06 2.02 2.11 1.99 1.99 1.99 2.09 2.04 2.06 2.02 2.11 1.99 1.98 1.99 2.09 2.04 2.06 2.02 2.11 1.99 1.98 11 2.75 3.23 3.70 2.93 3.31 3.71	7	2.21	2.49	2.84	2.32	2.50	2.86	2.24	3.06
8 2.07 2.41 3.06 2.16 2.46 3.02 2.13 3.28 2.05 2.40 3.04 2.17 2.44 3.00 2.09 3.11 9 1.99 2.08 2.07 2.05 2.02 2.11 1.99 1.98 1.96 2.06 1.99 2.05 2.04 2.00 2.07 1.98 1.91 1.96 2.09 2.05 2.06 2.00 2.07 1.98 1.91 1.99 2.09 2.05 2.06 2.02 2.11 1.99 1.99 1.99 2.09 2.05 2.06 2.02 2.11 1.99 1.91 1.99 2.09 2.04 2.06 2.02 2.11 1.99 1.99 1.99 2.09 2.04 2.06 2.02 2.11 1.99 1.98 1.99 2.09 2.04 2.06 2.02 2.11 1.99 1.98 11		2.20	2.49	2.85	2.32	2.49	2.86	2.23	3.06
2.05 2.40 3.04 2.17 2.44 3.00 2.09 3.11 9 1.99 2.08 2.07 2.05 2.02 2.11 1.99 1.98 1.96 2.06 1.99 2.05 2.04 2.00 2.07 1.98 1.91 1.96 2.09 2.05 2.04 2.00 2.07 1.98 1.91 1.99 2.09 2.05 2.04 2.00 2.07 1.98 1.91 1.99 2.09 2.05 2.06 2.02 2.11 1.99 1.99 1.0 1.99 2.10 2.06 2.07 2.02 2.11 1.99 1.99 1.99 2.09 2.04 2.06 2.02 2.11 1.99 1.99 1.99 2.09 2.04 2.06 2.02 2.11 1.99 1.98 11 2.75 3.23 3.70 2.94 3.31 3.71 2.88 3.94	8	2.07	2.41	3.06	2.16	2.46	3.02	2.13	3.28
9 1.99 2.08 2.07 2.05 2.02 2.11 1.99 1.98 1.96 2.06 1.99 2.04 2.00 2.07 1.98 1.91 1.99 2.09 2.05 2.06 2.00 2.07 1.98 1.91 10 1.99 2.10 2.06 2.07 2.11 1.99 2.00 10 1.99 2.10 2.06 2.07 2.11 1.99 1.99 1.99 2.09 2.04 2.06 2.02 2.11 1.99 1.99 1.99 2.09 2.06 2.07 2.02 2.11 1.99 1.99 1.99 2.09 2.04 2.06 2.02 2.11 1.99 1.98 11 2.75 3.23 3.70 2.93 3.31 3.71 2.88 3.94		2.05	2.40	3.04	2.17	2.44	3.00	2.09 2.15	3.11 3.28
1.96 1.992.06 2.091.99 2.052.04 2.062.00 2.022.07 2.121.98 1.991.91 2.00101.99 1.992.10 2.092.06 2.042.07 2.062.02 	9	1.99	2.08	2.07	2.05	2.02	2.11	1.99	1.98
1.992.092.052.062.022.121.992.00101.992.102.062.072.022.111.991.991.992.092.042.062.022.111.991.98112.753.233.702.943.313.722.783.932.743.223.702.933.313.712.883.94		1.96	2.06	1.99	2.04	2.00	2.07	1.98	1.91
10 1.99 2.10 2.06 2.07 2.02 2.11 1.99 1.99 1.99 2.09 2.04 2.06 2.02 2.11 1.99 1.99 11 2.75 3.23 3.70 2.94 3.31 3.72 2.78 3.93 2.74 3.22 3.70 2.93 3.31 3.71 2.88 3.94		1.99	2.09	2.05	2.06	2.02	2.12	1.99	2.00
1.992.092.042.062.022.111.991.98112.753.233.702.943.313.722.783.932.743.223.702.933.313.712.883.94	10	1.99	2.10	2.06	2.07	2.02	2.11	1.99	1.99
11 2.75 3.23 3.70 2.94 3.31 3.72 2.78 3.93 2.74 3.22 3.70 2.93 3.31 3.71 2.88 3.94		1.99	2.09	2.04	2.06	2.02	2.11	1.99	1.98
2.74 3.22 3.70 2.93 3.31 3.71 2.88 3.94	11	2.75	3.23	3.70	2.94	3.31	3.72	2.78	3.93
		2.74	3.22	3.70	2.93	3.31	3.71	2.88	3.94
12 1.55 1.76 - 1.69 1.90 1.96 1.52 -	12	1.55	1.76	-	1.69	1.90	1.96	1.52	-
1.55 1.77 - 1.65 1.91 1.96 1.54 -		1.55	1.77	-	1.65	1.91	1.96	1.54	_

*Numbers in bold and regular forms are RT and LR-TDDFT results, correspondingly.

-Excellent agreement between LR- and RT-TDDFT calculated vertical singlet excitation energies was achieved. The largest deviation does not exceed 0.07 eV, corresponding to $\approx 2\%$.

-Efficient calculation of the wide range absorption spectrum of a large dye molecule (more than 1000 basis functions) employing RT-TDDFT.

Wide Excitation Spectra of Large Dye Molecules

Porphyrins – building blocks of molecular wires

Spectral resolution of the RT approach is limited by the time step $\omega_{max} = \pi/\Delta t_{max}$

Absorption spectrum of P3B2, 130 atoms, 1364 basis functions (6-31G*), B3LYP

B3LYP

(Fe_{1-x}Cr_x)₂O₃ Solid Solutions

Finite QM embedded cluster approach
Host environment $ ightarrow$ non-polarizable point ch
Infinite Ewald consistent electrostatic potentia
~100 atoms, ~700 electrons, ~1200 basis func
Anti-ferromagnetic system
Very high DOS
Linear-response (frequency domain) TDDFT
Span ~5.5 eV: ~5000 roots
Windowing procedure is not clear cut
Real-time TDDFT
Delta-function electric field (x,y,z)
Three simulations per cluster
Simultaneously excites all the modes
Full absorption spectrum
Weak electric field
Time step 0.005 fs (total time ~12 fs)
$\begin{array}{c} 2.0 3.0 4.0 5.0 \\ \hline e_{2}O_{3} \\ O \ p \ (III) \rightarrow Fe \ e_{g}^{*} \\ O \ p \ (III) \rightarrow Fe \ e_{g}^{*} \\ O \ p \ (III) \rightarrow Fe \ e_{g}^{*} \\ O \ p \ (II) \rightarrow Fe \ e_{g}^{*} \\ O \ p \ (II) \rightarrow Fe \ e_{g}^{*} \\ Cr \ t_{2g} \rightarrow Fe \ t_{2g}^{*} \\ Cr \ t_{2g} \rightarrow Cr \ 3d^{*} \\ \end{array}$

▶ Optical band gap in FeCrO₃ (~ 2 eV): Cr $t_{2q} \rightarrow$ Fe t_{2q}^*

Chamberlin, et al , J. Phys.: Condens. Matter **25** 392002 (2013) Wang et al, J. Phys. Chem C, DOI: 10.1021/jp407496w (2013)

Absorption spectrum of f-coronene, 162 atoms, 1764 basis functions (6-31G*),

P3B2

Convergence

the absorption Fragment of spectrum of P3B2 for different (600, 800, 1000 and 1500 a.u.) total simulation times.

narge ctions

Projected Conjugate Gradient Method for Casida Eigenvalue Problem in Linear-Response (LR) TDDFT

$$H_{LR} = \begin{pmatrix} A & B \\ -B & -A \end{pmatrix}, A^{T} = A, B^{T} = B,$$

• $A + B$ positive definite

- $A \pm B$ positive definite
- Structured eigenpairs: if λ is an eigenvalue with eigenvector $(x^T y^T)^T$, then $-\lambda$ is also an eigenvalue with eigenvector $(y^T x^T)^T$
- A special class of Hamiltonian eigenvalue problem
- Only need to compute (positive) half of the eigenvalues
- Matrix available through matrix-vector multiplication subroutines only

Equivalent Formulation

 $\begin{pmatrix} 0 & K \\ M & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix},$

- K = A B, M = A + B;
- $KMy = \lambda^2 y$ and $MKx = \lambda^2 x$;
- $\min_{x^T y=1} x^T K x + y^T M y$

Projected Conjugate Gradient

- Current approximation $X = (x_1, x_2, ..., x_k)$
- Projected gradient: $R = (I XX^T)(AX X(X^TAX)) =$ $(r_1, r_2, ..., r_k)$
- $\hat{x}_i = \operatorname{argmin}_{x \in \{x_i, r_i, p_i\}} x^T A x$
- Project $\hat{X} = (\hat{x}_1, \hat{x}_2, ..., \hat{x}_k)$ onto the orthonormality constraint

