FASTMath Eigensolver Technologies

Eugene Vecharynski Meiyue Shao Metin Aktulga Chao Yang Esmond Ng

Lawrence Berkeley National Laboratory

Overview

- ► Large-scale density functional theory based electronic structure calculations require computing a large number of lowest eigenpairs $(10^3$ pairs or more).
- Density functional perturbation theory requires many more lowest eigenpairs (10³-10⁵). The challenge:
- ► Existing eigensolvers contain repeated calls of the Rayleigh–Ritz procedure that becomes a bottleneck when many eigenpairs are computed on a massively distributed-memory parallel machines.
- ▶ Standard computational kernels for solving dense eigenvalue problems (ScaLAPACK) do not scale beyond a certain number of cores.

Eigenvalue problems arise in a number of SciDAC applications. We highlight some recent progress on 1) computing a large number eigenpairs of a Hermitian matrix in the context of density functional theory based electronic s non-Hermitian matrix in the context of equation-of-motion coupled cluster (EOM-CC) calculation and complex scaling configuration interaction 3) computing the full spectrum of Bethe-Salpeter Hamiltonian matrix which has a s

Computing a large invariant subspace of a Hermitian matrix

Motivation:

- \triangleright The new eigensolver for computing large invariant subspaces of Hermitian matrices.
- ► The standard Rayleigh–Ritz procedure is replaced by a sequence of small dense eigenvalue problems plus the QR factorization of the approximate eigenspace.
- ► The Rayleigh–Ritz computation is performed only once every 5-10 iterations.
- \triangleright Takes advantage of the available preconditioning techniques.
- \triangleright Relatively easy to implement.
- ► The solver has been tested in within the Quantum Espresso and QBox electronic structure packages.

Our goal:

- ► Compute many lowest eigenpairs on massively parallel high performance computers.
- \triangleright Avoid or reduce the amount of the RR computations.

The Projected Preconditioned Conjugate Gradient (PPCG) algorithm

Difficulties with the existing solution approaches **► Require inverting** $A - \sigma I$ **("shift-and-invert").** \blacktriangleright Performance issues ► Failure to fully take advantage of BLAS3.

 \triangleright Robustness issues.

E. Vecharynski and C. Yang: *A Projected Preconditioned Conjugate Gradient Algorithm for Computing a Large Invariant Subspace of a Hermitian Matrix*, in preparation

Performance of the PPCG algorithm in Quantum Espresso

Benchmark systems: the solvation of LiPF6 in ethylene carbonate and propylene carbonate liquids containing 318 atoms (left), the 16 by 16 supercell of graphene containing 512 carbon atoms (center), and 5 by 5 by 5 supercell of bulk silicon containing 1000 silicon atoms (right).

Performance profile

Our goal:

 \triangleright Develop a novel eigensolver that overcomes the known difficulties.

- low-dimensional search subspaces.
- of concurrency.
- \triangleright Takes advantage of the available preconditioning techniques.
- \triangleright Robust, better convergence if memory is limited/tight.
- vectors iterations.

Left: PYPa-W_p/6-31+G(d,p) for the pairs with converged energies of 4.11 and 4.20 eV; Right: $(mU)₂-(H₂O)₂/6-311+G(d,p)$ for the pairs with converged energies of 8.89 and 10.04 eV.

 \triangleright Potentially high parallel efficiency

 \rightarrow Avoid complex arithmetic

$$
H = \begin{bmatrix} A & B \\ -\overline{B} & -\overline{A} \end{bmatrix},
$$

matrices, in preparation

GPLHR in Q-Chem: EOM-CC benchmark

$$
\begin{array}{ll} \text{(a)} & -\mathsf{Re}(A) + \mathsf{Re}(B) \\ \text{(b)} & \mathsf{Im}(A) - \mathsf{Im}(B) \end{array} = -\sqrt{-1}J_{n}(\widetilde{A}+\widetilde{B}),
$$

 $Re(B) - Im(B)$ $-\mathsf{Im}(B) - \mathsf{Re}(B)$

.