Eigenvalue problems arise in a number of SciDAC applications. We highlight some recent progress on 1) computing a few selected eigenpairs of a non-Hermitian matrix in the context of equation-of-motion coupled cluster (EOM-CC) calculation and complex scaling configuration interaction 3) computing the full spectrum of Bethe-Salpeter Hamiltonian matrix which has a special structure.

Computing a large invariant subspace of a Hermitian matrix

Motivation:

- Large-scale density functional theory based electronic structure calculations require computing a large number of lowest eigenpairs (10^3 pairs or more).
- \blacktriangleright Density functional perturbation theory requires many more lowest eigenpairs (10³-10⁵). The challenge:
- Existing eigensolvers contain repeated calls of the Rayleigh–Ritz procedure that becomes a bottleneck when many eigenpairs are computed on a massively distributed-memory parallel machines.
- Standard computational kernels for solving dense eigenvalue problems (ScaLAPACK) do not scale beyond a certain number of cores.

Our goal:

- Compute many lowest eigenpairs on massively parallel high performance computers.
- Avoid or reduce the amount of the RR computations.

The Projected Preconditioned Conjugate Gradient (PPCG) algorithm

- The new eigensolver for computing large invariant subspaces of Hermitian matrices.
- The standard Rayleigh–Ritz procedure is replaced by a sequence of small dense eigenvalue problems plus the QR factorization of the approximate eigenspace.
- The Rayleigh–Ritz computation is performed only once every 5-10 iterations.
- Takes advantage of the available preconditioning techniques.
- Relatively easy to implement.
- The solver has been tested in within the Quantum Espresso and QBox electronic structure packages.

E. Vecharynski and C. Yang: A Projected Preconditioned Conjugate Gradient Algorithm for Computing a Large Invariant Subspace of a Hermitian Matrix, in preparation

Performance of the PPCG algorithm in Quantum Espresso

Benchmark systems: the solvation of LiPF6 in ethylene carbonate and propylene carbonate liquids containing 318 atoms (left), the 16 by 16 supercell of graphene containing 512 carbon atoms (center), and 5 by 5 by 5 supercell of bulk silicon containing 1000 silicon atoms (right).

Performance profile

• Li318,	component	PPCG	Davidson
Nev = 2000ncpus=480,	НХ	10	6.4
• Tol = 1e-6	RR	10	55
 RR every 5 iterations 	GEMM	15	10
 Max subspace dimension for 	Cholesky QR	6	0
Davidson is 2k	Total	41	71.4

FASTMath Eigensolver Technologies

Eugene Vecharynski

Meiyue Shao

Metin Aktulga

Lawrence Berkeley National Laboratory

Overview

Non-Hermitian eigenvalue problems: applications a

- Computing a subset of eigenpairs closest to the given shi
- Electronic resonant states (method of complex coordir
- Equation-of-motion coupled-cluster (EOM-CC) method
- Difficulties with the existing solution approaches
- ▶ Require inverting $A \sigma I$ ("shift-and-invert").
- Performance issues
- Limited degree of parallelism ("one-by-one" eigenpa Failure to fully take advantage of BLAS3.
- Robustness issues.
- Our goal:
- Develop a novel eigensolver that overcomes the know

The Generalized Preconditioned Locally Harmonic I

- Uses the harmonic Rayleigh–Ritz procedure to extract low-dimensional search subspaces.
- Performs block iterations, effectively leverages BLAS3 of concurrency.
- Takes advantage of the available preconditioning tech
- Robust, better convergence if memory is limited/tight.
- Provides an option of switching between the approxim vectors iterations.

E. Vecharynski, F. Xue, and C. Yang: Computing interior *matrices*, in preparation

D. Zuev, E. Vecharynski, C. Yang, N. Orms, and A. I. Kryle *matrix-free eigensolvers in quantum chemistry*, J. Comp.

GPLHR in Q-Chem: EOM-CC benchmark

Benchmark systems: hydrated photoactive yellow protein chromop 1,3-dimethyluracil (mU)₂-(H₂O)₂ (ri

PYPa-W_D/6-31+G(d,p)

GPLHR (σ = 11 a.u.) nroots^a niters^b m Max # of stored vector

3	THE S		$101a$ π 01 5101 eu $vectu$
	4	1	8
	4	1	16
	4	1	24
	8	1	40
ge	npairs.	^b Th	ne number of iterations

^a The number of requested eig number of matrix-vector multiplications. Davidson faile

Left: PYPa- $W_p/6-31+G(d,p)$ for the pairs with converged e Right: $(mU)_2 - (H_2O)_2/6 - 311 + G(d,p)$ for the pairs with converged energies of 8.89 and 10.04 eV.

Chao Yang

Esmond Ng

nd computational challenges	Computing all eigenpairs of the Be	
ift σ nate rotation). d.		
air computation).	Exciton	
	O C An excitor	
n difficulties.	Bethe–Salpeter eigenvalue (BSE) prot Exciton energies can be obtained b	
Residual (GPLHR) method	$Hx = \lambda x$. We compute all eigenpairs of the co	
t approximate eigenpairs from		
kernels, provides multiple levels	where $oldsymbol{A}=oldsymbol{A}^{st}\in\mathbb{C}^{2n imes2n}$ is Hermitia $oldsymbol{B}=oldsymbol{B}^{T}\in\mathbb{C}^{2n imes2n}$ is complex symm	
niques.	The spectrum of H is symmetric w.r	
nate eigenvector and Schur	 Several existing candidates Hamiltonian QR algorithm 	
eigenpairs of non-Hermitian	 Hamiltonian SR algorithm Hamiltonian Jacobi algorithm 	
ov: <i>New algorithms for iterative</i> Chem., submitted (2014)	Embedding into a 4n × 4n real Ham Difficulties	
	 None of above preserves the struct Some are difficult to parallelize. 	
	Our goal: Develop a fully structure-preserving	
	Ongoing work on a Cholesky-QR/H	
phore PYPa- W_p (left) and dihydrated ight).	Observations<i>H</i> is unitarily similar to	
r_{0} # matucal	$\widehat{H} = \sqrt{-1} egin{bmatrix} {\sf Im}({m A}) + {\sf Im}({m B}) \ {\sf Re}({m A}) + {\sf Re}({m B}) \ {\sf Re}({m A}) \ {\sf Re}({m$	
9 18 27	where $J_n = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}, \widetilde{A} = \begin{bmatrix} R \\ -I \end{bmatrix}$	
63 to converge all eigenpairs. ^c The total ed to deliver the solution.	Both \widetilde{A} and \widetilde{B} are real symmetric. $J_n(\widetilde{A} + \widetilde{B})$ is a $2n \times 2n$ real Hamilton	
1st root 3rd root Convergence threshold GPLHR (m=1) 	► In practice $\tilde{A} + \tilde{B}$ is often positive de \rightarrow all eigenvalues of <i>H</i> are real.	
	 Transform to a skewsymmetric-s.p.c 	
	Use the symplectic URV decompos	
4 5 6 7 8 9 # iteration	Fully structure-preserving	
nergies of 4.11 and 4.20 eV;	 Avoid complex arithmetic 	

Potentially high parallel efficiency

on (electron-hole pair).

olem

by solving the Bethe–Salpeter eigenvalue problem

omplex Hamiltonian matrix

$$H = \begin{bmatrix} A & B \\ -\overline{B} & -\overline{A} \end{bmatrix},$$

netric.

r.t. real and imaginary axes.

niltonian matrix

ure of the spectrum of H in floating-point arithmetic.

parallel algorithm for BSE.

Hamiltonian-URV method

$$\begin{array}{ll} B) & -\operatorname{Re}(A) + \operatorname{Re}(B) \\ B) & \operatorname{Im}(A) - \operatorname{Im}(B) \end{array} \end{array} = -\sqrt{-1} J_n(\widetilde{A} + \widetilde{B}),$$

e(A) $\mathsf{Im}(A)$ $\operatorname{Re}(B)$ -Im(B) $\widetilde{B} =$ $-\operatorname{Im}(A) \operatorname{Re}(A)$ $\mathsf{D} = \left[-\mathsf{Im}(B) - \mathsf{Re}(B)\right]^{-1}$

nian matrix. efinite

d. pencil whenever possible. sition to handle the most generic case.