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Overview

Eigenvalue problems arise in a number of SciDAC applications. We highlight some recent progress on 1) computing a large number eigenpairs of a Hermitian matrix in the context of density functional theory based electronic structure calculation 2) computing a few selected eigenpairs of a
non-Hermitian matrix in the context of equation-of-motion coupled cluster (EOM-CC) calculation and complex scaling configuration interaction 3) computing the full spectrum of Bethe–Salpeter Hamiltonian matrix which has a special structure.

Computing a large invariant subspace of a Hermitian matrix

Motivation:
I Large-scale density functional theory based electronic structure calculations require

computing a large number of lowest eigenpairs (103 pairs or more).
I Density functional perturbation theory requires many more lowest eigenpairs (103-105).

The challenge:
I Existing eigensolvers contain repeated calls of the Rayleigh–Ritz procedure that

becomes a bottleneck when many eigenpairs are computed on a massively
distributed-memory parallel machines.

I Standard computational kernels for solving dense eigenvalue problems (ScaLAPACK)
do not scale beyond a certain number of cores.

Our goal:
I Compute many lowest eigenpairs on massively parallel high performance computers.
I Avoid or reduce the amount of the RR computations.

The Projected Preconditioned Conjugate Gradient (PPCG) algorithm

I The new eigensolver for computing large invariant subspaces of Hermitian matrices.
I The standard Rayleigh–Ritz procedure is replaced by a sequence of small dense

eigenvalue problems plus the QR factorization of the approximate eigenspace.
I The Rayleigh–Ritz computation is performed only once every 5-10 iterations.
I Takes advantage of the available preconditioning techniques.
I Relatively easy to implement.
I The solver has been tested in within the Quantum Espresso and QBox electronic

structure packages.

E. Vecharynski and C. Yang: A Projected Preconditioned Conjugate Gradient Algorithm
for Computing a Large Invariant Subspace of a Hermitian Matrix, in preparation

Performance of the PPCG algorithm in Quantum Espresso

Benchmark systems: the solvation of LiPF6 in ethylene carbonate and propylene carbonate liquids
containing 318 atoms (left), the 16 by 16 supercell of graphene containing 512 carbon atoms (center), and 5

by 5 by 5 supercell of bulk silicon containing 1000 silicon atoms (right).
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(a) Li318 (480 cores)
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Convergence of eigensolvers for Graphene512 (2,254 eigenpairs)
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(b) Graphene512 (576 cores)
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Convergence of eigensolvers for Sicluster (2,550 eigenpairs)
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(c) Silicon1000 (2,400 cores)
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Scaling of eigensolvers for Li318 (2,062 eigenpairs)
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Non-Hermitian eigenvalue problems: applications and computational challenges

Computing a subset of eigenpairs closest to the given shift σ

I Electronic resonant states (method of complex coordinate rotation).
I Equation-of-motion coupled-cluster (EOM-CC) method.

Difficulties with the existing solution approaches
I Require inverting A− σI (“shift-and-invert”).
I Performance issues

I Limited degree of parallelism (“one-by-one” eigenpair computation).
I Failure to fully take advantage of BLAS3.

I Robustness issues.
Our goal:
I Develop a novel eigensolver that overcomes the known difficulties.

The Generalized Preconditioned Locally Harmonic Residual (GPLHR) method

I Uses the harmonic Rayleigh–Ritz procedure to extract approximate eigenpairs from
low-dimensional search subspaces.

I Performs block iterations, effectively leverages BLAS3 kernels, provides multiple levels
of concurrency.

I Takes advantage of the available preconditioning techniques.
I Robust, better convergence if memory is limited/tight.
I Provides an option of switching between the approximate eigenvector and Schur

vectors iterations.

E. Vecharynski, F. Xue, and C. Yang: Computing interior eigenpairs of non-Hermitian
matrices, in preparation
D. Zuev, E. Vecharynski, C. Yang, N. Orms, and A. I. Krylov: New algorithms for iterative
matrix-free eigensolvers in quantum chemistry, J. Comp. Chem., submitted (2014)

GPLHR in Q-Chem: EOM-CC benchmark

Benchmark systems: hydrated photoactive yellow protein chromophore PYPa-Wp (left) and dihydrated
1,3-dimethyluracil (mU)2-(H2O)2 (right).

PYPa-Wp/6-31+G(d,p)
GPLHR (σ = 11 a.u.)

nrootsa nitersb m Max. # of stored vectors # matvecc

1 4 1 8 9
2 4 1 16 18
3 4 1 24 27
5 8 1 40 63

a The number of requested eigenpairs. b The number of iterations to converge all eigenpairs. c The total
number of matrix-vector multiplications. Davidson failed to deliver the solution.

Left: PYPa-Wp/6-31+G(d,p) for the pairs with converged energies of 4.11 and 4.20 eV;
Right: (mU)2-(H2O)2/6-311+G(d,p) for the pairs with converged energies of 8.89 and 10.04 eV.

Computing all eigenpairs of the Bethe–Salpeter eigenvalue problem

Band gapExciton

An exciton (electron-hole pair).

Bethe–Salpeter eigenvalue (BSE) problem
I Exciton energies can be obtained by solving the Bethe–Salpeter eigenvalue problem

Hx = λx .
I We compute all eigenpairs of the complex Hamiltonian matrix

H =

[
A B
−B −A

]
,

where A = A∗ ∈ C2n×2n is Hermitian,
B = BT ∈ C2n×2n is complex symmetric.

I The spectrum of H is symmetric w.r.t. real and imaginary axes.

Several existing candidates
I Hamiltonian QR algorithm
I Hamiltonian SR algorithm
I Hamiltonian Jacobi algorithm
I Embedding into a 4n × 4n real Hamiltonian matrix

Difficulties
I None of above preserves the structure of the spectrum of H in floating-point arithmetic.
I Some are difficult to parallelize.

Our goal:
I Develop a fully structure-preserving parallel algorithm for BSE.

Ongoing work on a Cholesky-QR/Hamiltonian-URV method

Observations
I H is unitarily similar to

Ĥ =
√
−1
[

Im(A) + Im(B) −Re(A) + Re(B)
Re(A) + Re(B) Im(A)− Im(B)

]
= −
√
−1Jn(Ã + B̃),

where

Jn =

[
0 In
−In 0

]
, Ã =

[
Re(A) Im(A)
−Im(A) Re(A)

]
, B̃ =

[
Re(B) −Im(B)
−Im(B) −Re(B)

]
.

Both Ã and B̃ are real symmetric.
I Jn(Ã + B̃) is a 2n × 2n real Hamiltonian matrix.
I In practice Ã + B̃ is often positive definite
; all eigenvalues of H are real.

Key of the new method
I Transform to a skewsymmetric-s.p.d. pencil whenever possible.
I Use the symplectic URV decomposition to handle the most generic case.

Features
I Fully structure-preserving
I Avoid complex arithmetic
I Potentially high parallel efficiency


