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ADIOS (2013 R&D 100 winner. Current version 1.7) has been

Low-latency, tight coupling

Improved Profile Fitting and UQ using Gaussian Process Regression(MIT)’ integrated with EPSI simulations to support: SOA, on-demand approach
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« Statistically rigorous fits for plasma profiles and gradients(key XGC1 inputs) coupling executions with support of dynamic workflow
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. : : s : : : : Continue to develop in-situ, in-transit, ...
Increased cor.lvergence rate of .forward u.ncertamty propagation TA,// \\ﬁ e aran o . Couplmg execut]ons in het.erogeneous computing Network staging over Wide-Area Network
* Implementation general and widely applicable. e o environments with streaming data support. Network (WAN)
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ADIOS Vis Schema
= (Create an easy-to-use schema for ALL ADIOS codes.
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- Profile Sensitivities at A=200MW complexity, or slowing down the code.
<. = Visualization schema: Semantics of the data for the
Sensitivity of Plasma Gradients in XGC1 to Applied Heating(UTexas,PPPL)?2 § purpose of visualization.
« Complete UQ workflow involves characterization of input uncertainties (see above), forward % Y = Describing visualization data for various tools (VTK, L evicesan 15.0 1 4\TK wEAVL
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» Goals of Sensitivity Analysis(SA): ° " Support for ADIOS Vis Schema. o . I.— n e
« Potentially reduce size of input space to be sampled by removing unimportant = Filtering of turbulence. W S G o 0% " ox e 100k
parameters (Reduce # of simulations for UQ) » |ntegration with higher quality rendering with visualization Execution across heterogenous Memory efficiency Execution efficiency
« Characterize effect of numerical parameters (grid, particle count, timestep) on Qol software from OLCF. —— ) ) _— ,
(plasma profiles) (Reduce cost of simulations for UQ) “Steady-state” gradient sensitivities \ EAVL: Extreme Scale Analysis and Visualization Library

computed at 200MW; temperature
(naturally) more sensitive than

« Quantify effects of embedded physics models on Qol (Reduce cost of simulations)

* Motivated by our goal of studying L-H transition and nonlocal edge effect on core, we are density.
performing a SA of plasma profiles to a heating model. We are using a combination of Ceitive o J00Y. 2x Cometen, DU L) T Data Staglng [ XGCa ]
sampling approaches to compute dQol/dA. A I

* Moderate case (CYCLONE base case) allows sensitivity computations at lower cost.

» Sensitivity predictions combined with scaling studies will be compared against larger scale,
enriched physics XGC1 runs: Use reduced system to project UQ of full system

« Repeat process with enriched physics, increased problem size if extrapolation(combined
with input uncertainties) is invalidated by new simulation data.
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EPSI coupling workflow

= Goal: To enable tightly coupled XGC1 and XGCa workflow using
memory to memory coupling for experimental time scale simulation
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DataSpaces As a Service

N o o = Persistent staging servers run as a service. . . .
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Calibration of XGCa Anomalous Diffusion under Uncertainty(UTEXAS,MIT,PPPL) G LA NG G 0D r Yoyl sreesss N
( ®@ D)) i o) @@@@ i.\ (1)Inter-node coupling data transfers (over
« Following D.Battaglia et al(2014), we are performing a calibration of an anomalous diffusion 9)3) | | networks) is minimized 0 Py DS DS
: ) ® (0 (10); ® - % ‘%\O%,)) % S &, % 5 6,
el . . . . . \@ @@ i \@i{ ) (2)Intra-node coupling data transfers can be
 Calibration will be Bayesian, using SCIDAC QUEST center software QUESO. | | performed using more efficient shared Preliminary Result
« Plan to use Alcator CMOD data to calibrate model in a variety of modes relevant computer node computer node 2 memory
o 1 with 12 cores with 12 cores = Enable exchange data through on-node
to L-H transition.
L et ; ; . s - memory.
* May use high-fidelity XGC1 simulation results as additional calibration training : . . . g
data lllustration of the data centrlct:lmappn?gdof thif?ppllcatlon process for = Data locality and core-level parallelism can be
concurren coupied WOrkriow .
. Will examine use of XGCa+calibrated model as a surrogate for XGC1 sensitivity y cotp exploited to reduce data movement by
analysis. increasing intra-node data sharing.

= Utilize SSD for data bursting.
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