
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Kilohertz Decision Making on Petabytes HEP-ASCR R&D Effort Towards Geant4 Re-engineering 
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Prototype Running On GPU 

Geant4 Geant4 version 10 HEP-ASCR R&D Effort 
High energy physics research as we know it today would not be possible without 
simulations. The massive production of event samples similar to those expected 
in the real experiment is an integral part of the process to design, build, operate 
highly complex accelerators and detectors and analyze the physics results. Thus 
Geant4-based simulation is currently the largest consumer of LHC compute 
cycles. In recent years, space and medicine have become significant user 
domains, with applications ranging from instrument and detector response 
verification to radiation dose and shielding optimization and analysis of biological 
effects. To address to such an increasing demand of high statistic simulations, the 
Geant4 Collaboration is releasing a new version of Geant4 (Geant4 version 10.0) 
in December 2013, which enables the use of multi-core CPUs and coprocessors 
in multi-threaded mode. 

Geant4 is a toolkit for the simulation of particles passing through 
and interacting with matter. Its areas of application include high 
energy, nuclear and accelerator physics, as well as studies in space 
science, material science, medicine and biology, and also in security 
and industrial applications. In high energy physics, the Geant4 
toolkit fulfills a critical need for the simulation of detectors at the 
LHC and at other existing and future experiments and facilities.  
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Performance Analysis 

Geant4 is maintained and further developed by an international 
collaboration, which consists of more than 100 physicists and 
computer scientists. U.S. involvement in the development of Geant4 
has been substantial since its early stages, and has increased with 
time. Several key Geant4 functionalities, including core framework, 
hadronic physics and visualization, are lead by the SLAC team, while 
major contributions in the key areas of hadronic physics and 
computing performance are made by the Fermilab team. 

1) Performance analysis of the current Geant4 toolkit and its 
typical applications,              

2) Reorganization of loops in the algorithms to make better 
use of vectorization 

3) Prototyping GPU-based code 
4) Studying automated code transformation for GPUs.  

Preliminary scalability test of Geant4 version 10-
pre-beta with full CMS detector geometry on 8-
core Intel Xeon CPU and one Intel Xeon Phi        
coprocessor (60 core).  
From left to right, CPU, CPU in hyper-thread, 
coprocessor, and coprocessor in hyper-thread. 

CUDA/OpenCL/OpenAcc 

GPU 

 Geant4 HEP applications 
 event-level parallelism 

 highly sequential  

 memory intensive 

Data Transfer Performance 

e- <<<32,128>>> CPU(ms) GPU(ms)  Gain 

Bremsstralung 2099 104 20 

Ionization 558 25 22 

Multiple Scattering 1034 185 6 

Electron Kernel 751 61 12 

γ <<<32,128>>> CPU(ms) GPU(ms) Gain 

Compton Scattering 51 6 8 

Photo Electric Effect 70 6 12 

Pair Production 50 10 5 

Photon Kernel 71 7 10 

Detector and Magnetic Field EM Physics and pRNG Navigation and Transportation 

Primary/Secondary Particles Track Dispatcher GPU Engine (CUDA C/C++) 

 GPU-Vector  
 track-level parallelism 

 vectorized track dispatche 

The process of re-engineering Geant4 has to be started, 
targeting on recently emerging new computing hardware such 
as many-core coprocessors and GPUs.    Using these new 
architectures efficiently requires to develop to leverage 
massive parallelization, complex memory hierarchy and deep 
vectorization capability. 
FNAL, SLAC, UNC, USC and ANL joined forces to launch an R&D 
effort to investigate the possible evolution of the software 
infrastructure and numerical algorithms of the Geant4 toolkit 
to utilize these emerging technologies.  

Nvidia Kepler Architecture 

Performance profile of the GPU implementation of the 4th-order 
Runge-Kutta electromagnetic field integrator.   

GPU performance analysis and tuning of the RK4 integrator 
• Potential for exploiting greater concurrency through multiple 

streams and better overlap of memory transfers and computation 
• Work in progress to generate and autotune portions of the kernel 

implementations 

HPCToolkit screenshot illustrating the deep call chains in the integrator. 

CPU performance analysis of Geant4 and 
Geant4MT 
• Effects of different compilers and 

compiler options 
• Callpath profiling of a CMS experiment 

benchmark (execution time, memory 
performance) 

Initial conclusions 
• Deep call chains in integrator do not 

allow local optimizations (including 
compiler optimizations) 

• Bad CPU and memory utilization caused 
by operating on a single particle at a 
time in functions at the bottom of deep 
call paths 

HPCToolkit screenshot showing 
the most expensive procedures 
in cmsExpMT (GEANT4 
10.0.beta, GCC 4.6.3). 
Note that the IEEE 
transcendentals are called from 
many sites each. 
The other routines have few 
callers. 

Overall Analysis 
•The general result is that when compiled correctly, cmsExpMT with 
geant4_mt_proto.9.5.p01 has no significant computational hot spots and cache usage is 
efficient.     
•“Hot  spot” is being used in the sense of “a small section of code that makes a large 
contribution to the cost of execution”. 
•Due to its object-oriented design, GEANT4’s costs are diffused across a broad set of classes 
and deep call  chains.   There are hot functional areas, however, such as computing the 
physical interaction lengths as part of the process of stepping along tracks. 

Choice of compiler   
GEANT4 is usually compiled using GCC 
8-core Intel Xeon 5462 2.8GHz 16 GB RAM.  
run_cmsExp with 10,000 events 
 

gcc 4.7.3 : 1440.99 seconds  
Intel 13.0.1 : 1272.56 seconds 

 
Alternative choices of compiler can yield 
significant performance advantages 
 
An autotuning exercise exploring 
compilation flags may be productive. 

Memory Hierarchy 
 
•In general, the instruction cache miss rates 
are found to be reasonable and do not 
constitute a bottleneck.  There are a few 
sections of the code that exhibit significantly 
higher rates, but these routines represent a 
miniscule part of the total time. 
•Data cache miss rates are, in general, low 
enough to not constitute a hot spot.    
•The “Cross Sections” and “Isotope” classes 
have loops that do table lookups with higher 
miss rates.   In aggregate, these routines 
make a non-negligible contribution to 
execution time.  

Depth of the “hottest” call chain.  
2nd column is the inclusive cost summed across all threads. 

Hotspot analysis (HPCToolkit) revealed: 
• Extensive use of Transcendental 

Functions 
• No obvious hot spots 
• Irregular threading overhead 
 
Focus on Application Understanding 
• Minor Performance Improvements due 

to manual tuning (1%) that has been 
already incorporated in version beta 
10.0. 

 
Future Investigations 
• Exploit Materials collision Memoization 
• Change stacking strategy to exploit 

coarse- and fine-grain vectorization 
 

Loops and 
Data Structure 
Reorganization 

 

 coalesced memory access 

 work balance (CPU-GPU)   
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