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Geant4 is a toolkit for the simulation of particles passing through High energy physics research as we know it today would not be possible without The process of re-engineering Geant4 has to be started,

and interacting with matter. Its areas of application include high simulations. The massive production of event samples similar to those expected targeting on recently emerging new computing hardware such
energy, nuclear and accelerator physics, as well as studies in space in the real experiment is an integral part of the process to design, build, operate as many-core coprocessors and GPUs. Using these new
science, material science, medicine and biology, and also in security highly complex accelerators and detectors and analyze the physics results. Thus architectures efficiently requires to develop to leverage

and industrial applications. In high energy physics, the Geant4 Geant4-based simulation is currently the largest consumer of LHC compute massive parallelization, complex memory hierarchy and deep
toolkit fulfills a critical need for the simulation of detectors at the cycles. In recent years, space and medicine have become significant user vectorization capability.

LHC and at other existing and future experiments and facilities. domains, with applications ranging from instrument and detector response FNAL, SLAC, UNC, USC and ANL joined forces to launch an R&D
verification to radiation dose and shielding optimization and analysis of biological effort to investigate the possible evolution of the software
effects. To address to such an increasing demand of high statistic simulations, the infrastructure and numerical algorithms of the Geant4 toolkit
Geant4 Collaboration is releasing a new version of Geant4 (Geant4 version 10.0) to utilize these emerging technologies.

in December 2013, which enables the use of multi-core CPUs and coprocessors

in multi-threaded mode.
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CPU performance analysis of Geant4 and Initial conclusions
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*Due to its object-oriented design, GEANT4’s costs are diffused across a broad set of classes cllafere el 4 fi : torizati _ . : _
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Overall Analysis

*The general result is that when compiled correctly, cmsExpMT with

geantd _mt_proto.9.5.p01 has no significant computational hot spots and cache usage is
efficient.

*“Hot spot” is being used in the sense of “a small section of code that makes a large

Investigations

® The percentage of time when memcpy is being performed in parallel with compute is low. More... Execution QUEUI!

run_cmsExp with 10,000 events . Lo ey i s v, ey i 75551 ey e sections of the code that exhibit significantly
. Low Memcpy overlap {01/ 20490 ms = 0% 1 N higher rates, but these routines represent a
gcc 4.7.3 : 1440.99 seconds ey miniscule part of the total time.
Intel 13.0.1: 1272.56 seconds eData cache miss rates are, in general, low
Performance profile of the GPU implementation of the 4t"-order enough to not constitute a hot spot.
Alternative choices of compiler can yield Runge-Kutta electromagnetic field integrator. *The “Cross Sections” and “Isotope” classes
significant performance advantages have loops that do table lookups with higher
GPU performance analysis and tuning of the RK4 integrator miss rates. In aggregate, these routines
An autotuning exercise exploring e Potential for exploiting greater concurrency through multiple make a non-negligible contribution to
S T e D compilation flags may be productive. streams and better overlap of memory transfers and computation execution time.
2nd column is the inclusive cost summed across all threads. Work in progress to generate and autotune portions of the kernel
implementations Electron Kernel Photon Kernel
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