3¢ Fermilab HEP-ASCR R&D Effort Towards Geant4 Re-engineering
A s USC Viterbi

e I ACCELERATOR School of Engincering

q e ﬂ\o LABORATORY SIS S

A RENCI Boyana Norris, Paul Ruth, Robert Fowler, Pedro Diniz, Robert Lucas, Makoto Asai, Andrea Dotti, Richard Mount,
rgQTDNDMeBORmRY Philippe Canal, Daniel Elvira, Soon Yung Jun, James B. Kowalkowski, Marc F. Paterno, Robert M. Roser

Geant4 Geant4 version 10 HEP-ASCR R&D Effort

Geant4 is a toolkit for the simulation of particles passing through High energy physics research as we know it today would not be possible without The process of re-engineering Geant4 has to be started,

and interacting with matter. Its areas of application include high simulations. The massive production of event samples similar to those expected targeting on recently emerging new computing hardware such
energy, nuclear and accelerator physics, as well as studies in space in the real experiment is an integral part of the process to design, build, operate as many-core coprocessors and GPUs. Using these new
science, material science, medicine and biology, and also in security highly complex accelerators and detectors and analyze the physics results. Thus architectures efficiently requires to develop to leverage

and industrial applications. In high energy physics, the Geant4 Geant4-based simulation is currently the largest consumer of LHC compute massive parallelization, complex memory hierarchy and deep
toolkit fulfills a critical need for the simulation of detectors at the cycles. In recent years, space and medicine have become significant user vectorization capability.

LHC and at other existing and future experiments and facilities. domains, with applications ranging from instrument and detector response FNAL, SLAC, UNC, USC and ANL joined forces to launch an R&D
verification to radiation dose and shielding optimization and analysis of biological effort to investigate the possible evolution of the software
effects. To address to such an increasing demand of high statistic simulations, the infrastructure and numerical algorithms of the Geant4 toolkit
Geant4 Collaboration is releasing a new version of Geant4 (Geant4 version 10.0) to utilize these emerging technologies.

in December 2013, which enables the use of multi-core CPUs and coprocessors

in multi-threaded mode.

GAMT GAMT
prototype-9.4 prototype-9.5 G4 10.0.beta G4 10.0 G4 10 SE:IES
(2011) (2012) (now) (Dec. 2013) (2014~)

Proof of * MT code APl re-design * Production < Further
principle integrated Example ready refinements

Geant4 is maintained and further developed by an international I dentify into G4 migraton ~ * Public
objects to Further testing release

collaboration, which consists of more than 100 physicists and be shared First Nvidia Kepler Architecture

computer scientists. U.S. involvement in the development of Geant4 B SBL Tz ons 1} Pert vic of th Geantd toolkit and i
has been substantial since its early stages, and has increased with .) Performance analysis of the current Geant4 toolkit and its

: : TR : ot e ey anp— Prelimi lability test of Geant4 version 10- typical applications
time. Several key Geant4 functionalities, including core framework, reliminary scalability test of Geants version yP PP '

T e 105D ' pliss o] L L (Y CIERTEIF (EOMELRY Gt Reorganization of loops in the algorithms to make better
hadronic physics and visualization, are lead by the SLAC team, while core Intel Xeon CPU and one Intel Xeon Phi 2 0 P 5
use of vectorization

major contributions in the key areas of hadronic physics and HOST ru coprocessor (60 core).

| . From left to right, CPU, CPU in hyper-thread, Prototvpineg GPU-based code
computing performance are made by the Fermilab team. coprocessor, and coprocessor in hyper-thread. .yp 6 :
Studying automated code transformation for GPUs.

Performance Analysis Loops and Prototype Running On GPU

ALLCLOCK (us).[0.0] (E) * ALLCLOCK (us).[0,01 (1
Experiment Aggregate Metrics 1.29=+09 100 a; 1.29=+09 100 %
= : - i : i 1.292+409 100 %
- : : !
=2 Callin ontext Vie at Vi - B 131 GaU ger:: y 1.28=+409 99_3%
p 422: G BE i 1.28=+09 99.3%
J -ﬂ~ J-L | 6 f[;,..;] | r.m |IE5@ .A" A -~ B 210: trolm :SetNewValue(G4Ulcommand*, G4String) 1.28=+09 99.3%
. - 27 i 1.282+09 99.3%
- B2 Start() 1.282+09 99.3%

Scope PAPI TOT CYC-Sum () [PAPLTOT.CYGiSum (& HPCToolkit screenshot showing

Experiment Aggregate Metrics

b_?eee?54_lng 1:51e+11 g.8% 1:51e+11 g.8% the most expen5|ve procedures

215 i 1.28=+09 99 3% I' i
- Bl ApplyCommand(char const*) 1.28=+09 99.3% . . 1 i
F__ieee754_exp l.18e+ll 6.8% Jlde+ 6.8% o= & ' . s IR !
b G4ElasticHadrMuclewsHE::HadrNucDifferCrSec(int, int, double) 1.68e+11 8.7% 5.73e+10 3.3% . ~ E»210: ger:: : - 128408 98- 3% ‘ Py
. . 5 287 B i L .28e . L o
- CdMavigator::LocateGlobalPointAndSetupiCLHEP: Hep3Vector consté, 1.28e+11 7.4% 4.29e+10 2.5% | n Cl I l S EX p MT (G EA NT4 < g 155: GARUNManager: {DoEventloop(int, char consts, int) izl::: :: j: . TraCkmD Step

b ieee754_atanz

3.90e+10 2.3% 3.90e+10 2.3% - 3 . R \ =7
b C4PhysicsVector:Valueidouble, unsigned long&) const 6.99e+10 4.1% i.80e+10 2.2% 10 O beta GCC 4 6 3) ~ B»264: GAEventManager: :DoProcessing(GA4Event*) 5.342+05 0.1% 1.26=+08 97.1% ik , = ! -

b C4CrossSectionDataStore::GetCrossSection(G4DynamicParticle const* .77e+11 10.2% .G det ; oy) s = s , 185 i OneTrack(G4Track*) 2. 982 2x 1.252409 96.6% f [e .

b GASteppingManager::Stepping() 1.42e+12 82.1% 2.55e+10 1.5% ~ B 12 ing 5. 61+ .ax, 1.17=+09 90.8% 5 Wy =0 RﬁﬂlTI'ﬂ]ECtO[‘v

b G4SteppingManager::DefinePhysicalSteplengthi) 6.00e+11 34.8% 2.4le+10 1.4% Note that the IEEE "180; e co - double. . .] . 2.27= -ox entesun e ate / e ’ mISSdIS aIlCC
» G4VoxelNavigation::ComputeStep(CLHEP::He p 3Vector const&, CLHEP: .27e+1l 7.3% Lide+ 4 —) , — conste. double, ' = — .~ e H t t . HPCT _t

» G4Navigator::ComputeStep(CLHEP::He |:|-3‘u" ecto & ELHEF“ ‘Hep3) 1.85e+11 10.7% 2.25e+10 1.3% d I ” d f e : ‘ . s ol S I (Ik) I d'

+ GahPairProductio hodel ComputeoMicoscopi c dosble, a.72en10 st 2ero L transcendentals are called rrom e aoible, i e i otspot analysis oolkit) revealed:

F G4HadronCrossSections::CalcSca gC ssSec [G4D5.r Part 2.06e+10 1.2% 1.91e+10 1.1% . b ms185: - ; . - &, &, : He a.280 3% 9.352407 7.2% .

k- GaParticleChange Ch H {G4Tra L onst&) 1.78e+10 1.0% 1.78e+10 1.0% many Sltes eaCh, » 323: GaMultiLeve i i i i ¢ . G4Fi <] o 2,292+ 2% 1.02=+08 7.9% - ExtenS|Ve USE Of Transcendental
PCLHEP.“.RanecuEngine::ﬂat{} . e+ . . a2+ . P »210: i i ¢ i i < &, i < e, I : e, 1.02=+06 0.1%% 6.01=+07 4.6% F t'

P C4CrossSectionDataStore::CetCrossSection(G4DynamicParticle const® 1.94e+11 11.3% 1.67e+10 1.0% h h 1 h f b =t E ' = = . = . . : DR it LoGEedn L.2% unc |Ons

b CdPhotoMuclearCrossSection::GetlsoCrossSection{G4DynamicParticle 1.74e+10 1.0% 1.64e+10 1.0% T e Ot er rOUtIneS ave eW

b C4BCCNucleoninelasticXs::CoulombFactoridouble, int)

» GaTransportation: PostStepDolt(GATrack consts, Gdstep constd) Lsell sn Lasesis ol callers. HPCToolkit screenshot illustrating the deep call chains in the integrator. e No obvious hot spots

Pk sincos . 1 . 1
- CAVEmMProcess::PostStepGetPhysicalinteractionLength(G4 Track const & 4.35e+10 2.5% 1.34e+10 0.8% ® | h d 1 h d
P C4CrosssectionDataStore::GetlsoCrossSsection{G4DynamicParticle con l.0de+11 &.0% 1.34e+10 0.8%| 4 Irregu a r t rea Ing Over ea

- C4SteppingManager::InvokeAlongStepDoltProcs() I3

Chords

CPU performance analysis of Geant4 and Initial conclusions

J|| 220m of 4075w | | Geant4MT Deep call chains in integrator do not Focus on Application Understanding

o Effects of different compilers and allow local optimizations (including e Minor Performance Improvements due
compiler options compiler optimizations) to manual tuning (1%) that has been ——== K

e Callpath profiling of a CMS experiment Bad CPU and memory utilization caused already incorporated in version beta =7 = — M
benchmark (execution time, memory by operating on a single particle at a 10.0. LA\ S

performance) time in functions at the bottom of deep . .
call paths Future Investigations o Geant4 HEP applications GPU-Vector

o L, e Exploit Materials collision Memoization . .
contribution to the cost of execution”. [o [§ s i Garmngh [\ oo 1 (e o ot i O N Praptee [e G N] . Change stacking strategy to exploit « event-level parallelism track-level parallelism coalesced memory access

*Due to its object-oriented design, GEANT4’s costs are diffused across a broad set of classes cllafere el 4 fi : torizati _ . : _
and deep call chains. There are hot functional areas, however, such as computing the ORISR IS IES] FEeEe i « highly sequential » vectorized track dispatche work balance (CPU-GPU)

physical interaction lengths as part of the process of stepping along tracks. _ e Memory intensive
Memory Hierarchy

o e o | . s . . . Data Transfer Performance
Choice of compiler In general, the instruction cache miss rates

GEANT4 is usually compiled using GCC | [o compuro trtestont 190,001 me 12,008 o = 5. are found to be reasonable and do not Tesla M2070 (Device) and AMD Opteron(um) 6138 (Hos)
8-core Intel Xeon 5462 2.8GHz 16 GB RAM. . ot memeostc ot overion Lo e | oc1m e = constitute a bottleneck. There are a few
- ——— Host to Device

Overall Analysis

*The general result is that when compiled correctly, cmsExpMT with

geantd _mt_proto.9.5.p01 has no significant computational hot spots and cache usage is
efficient.

*“Hot spot” is being used in the sense of “a small section of code that makes a large

Investigations

® The percentage of time when memcpy is being performed in parallel with compute is low. More... Execution QUEUI!

run_cmsExp with 10,000 events . Lo ey i s v, ey i 75551 ey e sections of the code that exhibit significantly
. Low Memcpy overlap {01/ 20490 ms = 0% 1 N higher rates, but these routines represent a
gcc 4.7.3 : 1440.99 seconds ey miniscule part of the total time.
Intel 13.0.1: 1272.56 seconds eData cache miss rates are, in general, low
Performance profile of the GPU implementation of the 4t"-order enough to not constitute a hot spot.
Alternative choices of compiler can yield Runge-Kutta electromagnetic field integrator. *The “Cross Sections” and “Isotope” classes
significant performance advantages have loops that do table lookups with higher
GPU performance analysis and tuning of the RK4 integrator miss rates. In aggregate, these routines
An autotuning exercise exploring e Potential for exploiting greater concurrency through multiple make a non-negligible contribution to
S T e D compilation flags may be productive. streams and better overlap of memory transfers and computation execution time.
2nd column is the inclusive cost summed across all threads. Work in progress to generate and autotune portions of the kernel
implementations Electron Kernel Photon Kernel

i
L
E

a2l g
£

Data Transfer Speed [Gb/sec]

Ratio of Processing Time: CPU/GPU

=Eel 1T
@IIIIIIIIIIIIIIII E
£

—iil
.
—iil
|

o

-I: =—

— Fr s

s

4

10° 10° 10° 10°
Number of Tracks/Bundle (1M tracks = 40MB)

the

Device Memary

	Slide Number 1

