

Kilohertz Decision Making on Petabytes HEP-ASCR R&D Effort Towards Geant4 Re-engineering

 Boyana Norris, Paul Ruth, Robert Fowler, Pedro Diniz, Robert Lucas, Makoto Asai, Andrea Dotti, Richard Mount,
Philippe Canal, Daniel Elvira, Soon Yung Jun, James B. Kowalkowski, Marc F. Paterno, Robert M. Roser

Prototype Running On GPU

Geant4 Geant4 version 10 HEP-ASCR R&D Effort
High energy physics research as we know it today would not be possible without
simulations. The massive production of event samples similar to those expected
in the real experiment is an integral part of the process to design, build, operate
highly complex accelerators and detectors and analyze the physics results. Thus
Geant4-based simulation is currently the largest consumer of LHC compute
cycles. In recent years, space and medicine have become significant user
domains, with applications ranging from instrument and detector response
verification to radiation dose and shielding optimization and analysis of biological
effects. To address to such an increasing demand of high statistic simulations, the
Geant4 Collaboration is releasing a new version of Geant4 (Geant4 version 10.0)
in December 2013, which enables the use of multi-core CPUs and coprocessors
in multi-threaded mode.

Geant4 is a toolkit for the simulation of particles passing through
and interacting with matter. Its areas of application include high
energy, nuclear and accelerator physics, as well as studies in space
science, material science, medicine and biology, and also in security
and industrial applications. In high energy physics, the Geant4
toolkit fulfills a critical need for the simulation of detectors at the
LHC and at other existing and future experiments and facilities.

G
ea

nt
4

In
ve

st
ig

at
io

ns

RENCI

Performance Analysis

Geant4 is maintained and further developed by an international
collaboration, which consists of more than 100 physicists and
computer scientists. U.S. involvement in the development of Geant4
has been substantial since its early stages, and has increased with
time. Several key Geant4 functionalities, including core framework,
hadronic physics and visualization, are lead by the SLAC team, while
major contributions in the key areas of hadronic physics and
computing performance are made by the Fermilab team.

1) Performance analysis of the current Geant4 toolkit and its
typical applications,

2) Reorganization of loops in the algorithms to make better
use of vectorization

3) Prototyping GPU-based code
4) Studying automated code transformation for GPUs.

Preliminary scalability test of Geant4 version 10-
pre-beta with full CMS detector geometry on 8-
core Intel Xeon CPU and one Intel Xeon Phi
coprocessor (60 core).
From left to right, CPU, CPU in hyper-thread,
coprocessor, and coprocessor in hyper-thread.

CUDA/OpenCL/OpenAcc

GPU

 Geant4 HEP applications
 event-level parallelism

 highly sequential

 memory intensive

Data Transfer Performance

e- <<<32,128>>> CPU(ms) GPU(ms) Gain

Bremsstralung 2099 104 20

Ionization 558 25 22

Multiple Scattering 1034 185 6

Electron Kernel 751 61 12

γ <<<32,128>>> CPU(ms) GPU(ms) Gain

Compton Scattering 51 6 8

Photo Electric Effect 70 6 12

Pair Production 50 10 5

Photon Kernel 71 7 10

Detector and Magnetic Field EM Physics and pRNG Navigation and Transportation

Primary/Secondary Particles Track Dispatcher GPU Engine (CUDA C/C++)

 GPU-Vector
 track-level parallelism

 vectorized track dispatche

The process of re-engineering Geant4 has to be started,
targeting on recently emerging new computing hardware such
as many-core coprocessors and GPUs. Using these new
architectures efficiently requires to develop to leverage
massive parallelization, complex memory hierarchy and deep
vectorization capability.
FNAL, SLAC, UNC, USC and ANL joined forces to launch an R&D
effort to investigate the possible evolution of the software
infrastructure and numerical algorithms of the Geant4 toolkit
to utilize these emerging technologies.

Nvidia Kepler Architecture

Performance profile of the GPU implementation of the 4th-order
Runge-Kutta electromagnetic field integrator.

GPU performance analysis and tuning of the RK4 integrator
• Potential for exploiting greater concurrency through multiple

streams and better overlap of memory transfers and computation
• Work in progress to generate and autotune portions of the kernel

implementations

HPCToolkit screenshot illustrating the deep call chains in the integrator.

CPU performance analysis of Geant4 and
Geant4MT
• Effects of different compilers and

compiler options
• Callpath profiling of a CMS experiment

benchmark (execution time, memory
performance)

Initial conclusions
• Deep call chains in integrator do not

allow local optimizations (including
compiler optimizations)

• Bad CPU and memory utilization caused
by operating on a single particle at a
time in functions at the bottom of deep
call paths

HPCToolkit screenshot showing
the most expensive procedures
in cmsExpMT (GEANT4
10.0.beta, GCC 4.6.3).
Note that the IEEE
transcendentals are called from
many sites each.
The other routines have few
callers.

Overall Analysis
•The general result is that when compiled correctly, cmsExpMT with
geant4_mt_proto.9.5.p01 has no significant computational hot spots and cache usage is
efficient.
•“Hot spot” is being used in the sense of “a small section of code that makes a large
contribution to the cost of execution”.
•Due to its object-oriented design, GEANT4’s costs are diffused across a broad set of classes
and deep call chains. There are hot functional areas, however, such as computing the
physical interaction lengths as part of the process of stepping along tracks.

Choice of compiler
GEANT4 is usually compiled using GCC
8-core Intel Xeon 5462 2.8GHz 16 GB RAM.
run_cmsExp with 10,000 events

gcc 4.7.3 : 1440.99 seconds
Intel 13.0.1 : 1272.56 seconds

Alternative choices of compiler can yield
significant performance advantages

An autotuning exercise exploring
compilation flags may be productive.

Memory Hierarchy

•In general, the instruction cache miss rates
are found to be reasonable and do not
constitute a bottleneck. There are a few
sections of the code that exhibit significantly
higher rates, but these routines represent a
miniscule part of the total time.
•Data cache miss rates are, in general, low
enough to not constitute a hot spot.
•The “Cross Sections” and “Isotope” classes
have loops that do table lookups with higher
miss rates. In aggregate, these routines
make a non-negligible contribution to
execution time.

Depth of the “hottest” call chain.
2nd column is the inclusive cost summed across all threads.

Hotspot analysis (HPCToolkit) revealed:
• Extensive use of Transcendental

Functions
• No obvious hot spots
• Irregular threading overhead

Focus on Application Understanding
• Minor Performance Improvements due

to manual tuning (1%) that has been
already incorporated in version beta
10.0.

Future Investigations
• Exploit Materials collision Memoization
• Change stacking strategy to exploit

coarse- and fine-grain vectorization

Loops and
Data Structure
Reorganization

 coalesced memory access

 work balance (CPU-GPU)

	Slide Number 1

