
When a single objective, such as execution time, is available, the autotuning search problem can be posed as

a numerical optimization problem. Increasingly, multiple metrics are of interest simultaneously, such as

execution time, energy consumption, resilience to errors, power demands, and memory footprint. When the

relative weights or constraints on these objectives are not known at search time, autotuning becomes a

multiobjective optimization problem. We provide formalism for multiobjective optimization studies of broad

applicability in autotuning, architecture design, and other areas of HPC. We discuss some of the potential

tradeoffs among multiple objectives, and provide empirical evidence that such tradeoffs do exist in practice.

Multiobjective Optimization

Pareto Optimality Abstract

THE OBJECTIVE

•F1(x),…,Fp(x) are p possibly conflicting objectives that need to be optimized simultaneously

•Can capture average, median, quantile (e.g., worst-case) empirical performance

•Often stochastic/noisy (from measurement and/or run)

•Depends on machine and input size (or distribution over inputs)

•Assumes no a priori weights available for the objectives

•Examples: run time, power, energy, failure rate

Tradeoff Studies I

The problem of empirically optimizing a code can be posed as the mathematical optimization problem:

SUPER Optimization of

Power, Energy, Performance, and More!

Prasanna Balaprakash, Paul Hovland (lead), Stefan Wild

Argonne National Laboratory

Ananta Tiwari

San Diego Supercomputer Center

 Ray Chen, Jeff Hollingsworth

University of Maryland

THE DECISIONS

•Binary (compiler type, +examples)

•Integer (unroll factor, register tiling, +examples)

•“Continuous” (algorithmic parameters, internal

tolerances)

•Each x generates a code variant (e.g., through source-

to-source or compiler-based transformation)

THE CONSTRAINTS

•Ensuring feasibility of transformation

•Correctness of output, maximum temperature, etc.

GOAL:

Develop multi objective optimization framework that allows exploration of the tradeoffs

Existence of these tradeoffs can motivate hardware designers to expose a richer and more appropriate set

of knobs to future administrators and software designers

A framework that is sufficiently general and can be easily extended to incorporate new hardware-and

software-based power/energy knobs as they become available

Arises when several objectives need

to be to optimized simultaneously
 Sometimes objectives are correlated and satisfied

simultaneously; otherwise there are tradeoffs

 Code variants now live both in a decision

space and in an objective space

• When multiple objectives are not competing

the Pareto front corresponds to a single point,

which simultaneously minimizes both objectives

Intel Xeon Phi: Impact of number of threads; TORCH quick sort kernel

Blue Gene/Q: Impact of number of nodes; MiniFE mini-application

Future Investigations

Support for this work was provided through the Scientific Discovery through Advanced Computing (SciDAC)

program funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research.

• Develop multi objective optimization algorithms for autotuning search

• Identify appropriate use cases

• Study other tradeoffs: - Resilience versus memory footprint; Resilience versus execution time

 - Memory footprint versus execution time; Memory footprint versus energy

Intel Xeon E5530: Impact of frequency scaling; SPAPT fdtd kernel

• Because of the relationship between power and energy, all points on the energy-time Pareto front have a

corresponding point on the power-time Pareto front

• Number of non-dominated points for energy-time is bounded by the number of non-dominated points for power-

time

• A necessary condition for x to be a non-dominated point on the energy-time Pareto front is

Three simultaneous objectives: Build time, binary size, and execution time

• To observe tradeoff, the power savings must outpace the product of idle power and relative slow-down:

Our studies show that in some settings objectives of interest can be strictly

correlated and there is a single, “ideal" decision point; in others, significant

tradeoffs exist.

• Pareto front contains significantly richer information

than one obtains from single-objective formulations

• Code variants for which no other variant is better in all

objectives are said to be nondominated or Pareto

optimal

• For search algorithms, only certain regions of the

objective space are of interest

• The ideal and nadir point define the range of

objective that include all possible optimal tradeoffs

• For many time-power-energy multi-objective problems,

there can be measurement error in each objective

• Consequently, we have a

relaxed Pareto front that potentially consists of a

cloud of points

Tradeoff Studies II

• When these three objectives are considered simultaneously, all points are Pareto optimal

• When the objectives are considered pairwise, some points are dominated

“Can search algorithms save large-scale automatic performance tuning?” Balaprakash, Wild, & Hovland, iWAPT 2011.

“Online adaptive code generation and tuning .” Tiwari & Hollingsworth, IPDPS 2011.

“SPAPT (Search Problems in Automatic Performance Tuning).” Balaprakash, Wild, & Norris, ICCS 2012.

“Multi-objective optimization of HPC kernels for performance, power, and energy” Balaprakash, Tiwari, & Wild, Preprint ANL/MCS-P4069-

0413, 2013

Illustrative example on three objectives on IBM BG/Q

Minimizing run time

 is conflicting with

 power consumption

Minimizing energy consumption

 conflicts with

 run time

Multi objective optimization concerns the study of optimizing two or

more objectives simultaneously. Even if there is a unique optimal

(software/hardware) decision when any of the objectives is

considered in isolation, there may be an entire set of solutions when

the objectives are considered collectively.

