
Algorithms for a Nonlinear Hermitian Eigenproblem

Spectrum Slicing
High Order Hamiltonian and Postprocessing

Scalable RDMA Network Code
High Performance Compute Kernels

12 6 0 6 12 6 0 6 12 6 0 6 12 6 0 6

12 6 0 6 12 6 0 6 12 6 0 6 12 6 0 6

12 6 0 6 12 6 0 6 12 6 0 6 12 6 0 6

12 6 0 6 12 6 0 6 12 6 0 6 12 6 0 6
Energy (eV)

- -

- -

- -

- -

- -

- -

- -

- -

- -

- -

- -

- -

- -

- -

- -

- -

The occupied states of a silicon cluster with 525 atoms are shown in blue. The red
slices were computed with the spectrum slicing code, extending into the unoccupied
or virtual states in the lower left corner. Each slice was computed independently on
a separate set of processors. Each set of processors deals with a smaller
approximation subspace, reducing the cost of the cubic scaling subspace operations.

Grady Schofield, James R. Chelikowsky, Yousef Saad

0 20 40 60 80 100 120 140
Iteration

-5.40

-5.20

-5.00

-4.80

-4.60

-4.40

-4.20

-4.00

-3.80

-3.60

En
er
gy

(e
V,
so
lid
)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Su
bs
pa
ce

Re
si
du
al
N
or
m
(d
as
he
d)

The red line shows the Ritz value (approximate eigenvalue)
of the most recent vector iterate. The inner horizontal lines
are the bounds of the slice and the filter satisfies some precision
criteria at the outer horizontal lines. We monitor this red line
for it drifting out of the upper slice bounds and use this as a
convergence heuristic. Once the red line leaves the energy
range of the slice, the method will be finding eigenpairs outside
the slice. We avoid repeating a Rayleigh-Ritz procedure this way.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-0.9 -0.85 -0.8 -0.75 -0.7 -0.65 -0.6
Energy

To enhance a portion of the spectrum we use a
Chebyshev-Jackson polynomial approximation of a step
function as a filter. This is a classical Chebyshev
approximation with the high order terms attenuated by
a smooth function. The Chebyshev-Jackson filter is shown
in red. This smoothness prevents convergence of eigenpairs
whose eigenvalue lays in the local extremum of the ripples in
the blue line, allowing us to use the convergence heuristic
described below.

The Kohn Sham equation is a nonlinear eigenproblem where the number of eigenpairs sought corresponds
roughly to the number of electrons in the system. Solving the equation involves solving the eigenproblem
iteratively, looking for a fixed point in terms of the density. Since the number of eigenpairs sought scales
with the number of electrons in the system, analyzing larger systems means increasing the number of
eigenpairs computed. The cost of generating the vectors for an approximation space scales quadratically
in the number of states, but operations
associated with turning the approximation
space into approximate eigenvectors,
orthogonalization and a Rayleigh-Ritz
procedure, scale cubically in the number
of states. We developed a spectrum
slicing method to address this issue. In this
method, the spectrum is partitioned into
disjoint slices and the eigenpairs are
computed in smaller subspaces associated
with each slice as depicted below. The
method also functions as a parallelization
scheme since separate groups of processors
can work on each slice.

Boundary conditions are either zero
Dirichlet or periodic in 1, 2, or 3
dimensions for wires, slabs or solids
respectively.

The Kohn-Sham equation

This is the average send/receive rate for our matrix-vector multiplication operations. The boxes show
the compute nodes used on Hopper at NERSC, which has a 3D network topology. The system tested
was a DNA system where the grid spacing was reduced to keep the number of grid points per core
constant in the last three data points. Further improvements in the transfer rate could be made by
reordering the nodes.

The new network code achieves better load balancing by partitioning
domains to even out the number of grid points per compute node.
Allowing partition planes with notches, as depicted above can prevent
load imbalances of as much as 20%. This type of partition scheme
complicates the situtaion when trying to reduce the copying of data into
send buffers.

0 2000 4000 6000 8000
14

15

16

17

18

19

20

Compute Nodes

N
ei
gh
bo
rs

Part of obtaining better scalability in the matrix-vector product
comes from minimizing the number of neighboring compute
nodes that must converse with a given node during the
calculation. The partition scheme we have implemented keeps
the number to a minimum even as the number of compute
nodes (not cores) grows large, as shown in the figure above.

The most costly step in the algorithm for solving the eigenvalue problem is the filtering operation that
produces the basis for the approximation subspace. This filtering step consists of matrix-vector products.
For a finite difference discretization of the Kohn-Sham Hamiltonian, communication dominates the cost
of doing these products. We have developed a partitioning scheme (and associated algorithms) that
attains these goals.
 1. We want to minimize copying of data into send buffers. Instead we want to do communication directly from
 the data buffers where data already resides.
 2. We want to communicate with fewer large messages as opposed to more small messages. This is because
 there is a steep drop in peek transfer rates for smaller messages.
 3. We want to communicate with as few neighboring compute nodes as possible, this works toward the previous
 goal of fewer large messages.
 4. We want to use remote direct memory access capabilities of the network hardware because this is the
 normal mode of operation for supercomputer networks and stands the best chance of getting the
 highest performance.
We have developed a code that achieves these goals using RDMA capabilities with either Infiniband verbs
or Cray's Generic Network Interface (GNI) library. A large test was performed on a DNA system, see bellow,
using NERSC's Hopper computer.

0 1 2 3 4 5

0.04

0.02

0.00

0.02

0.04

Fo
rc

e
 (

R
y
/b

o
h

r)

Grid shift in x (k*h /5)

oxygen

carbon

x component of force on CO molecule, h=0.22

ideal

High order

Low order

The interatomic forces computed on two atoms show the effect of discretization
error as the grid is translated. The ideal result would be a horizontal line, translational
independence of the result. Using high order operators for part of the ionic potential and
high order Taylor series approximations of the solution in the postprocessing, the variation
around the horizontal line is reduced by a factor of two. To get closer to the ideal solution,
we are looking at high order operators for the remaining part of the ionic potential as well
as the Hartree and exchange-correlation potentials.

The key to the high order methods we are implementing
is a Taylor series approximation in a cube around each
gridpoint. By using numerical derivatives for high order
postprocessing or their symbolic counterpart in terms of
unknown grid data for Hamiltonian operators, we get
the accuracy of a finer grid on a coarse grid.

A typical finite difference discretization for the Kohn-Sham problem involves a stencil for the Laplacian and pointwise evaluation of
the potentials. The eigenvalues and total energies converge faster than many other quantities of interest, such as forces,
because computing the these quantities requires the eigenvectors which converge more slowly than the eigenvalues. We are
developing a method that uses high order Taylor series at each grid point to give a representation of the pontetials and high order
approximations of the solution for postprocessing. Using modern C++11 features we are able to use the same code for
high order numerical calculations as well as symbolic manipulations necessary to derive the high order functionals that represent
potentials in the Hamiltonian.

A high order treatment of the Laplacian term
in the Hamiltonian uses a stencil that samples
points around a grid point. This results in a
sparse matrix structure. but the rectilinear
structure of the stencil makes it possible to
implement the operations with a vectorized code.

1
2
3

4
5

67
8

1

2

3

1
2

4
3

6

1

8

4 5

2

7

The grid nature of the discretization scheme allows us to collect nearby rows of grid points into
groups and process the rows as vectors. If we consider these arrays componentwise, the fact that we've taken
a group of them at once means we have multiple stencils whose operations are independent of each other.
Interlacing operations from the various stencils improves pipelining in the code. In the figure above the blue
rows are output arrays, and we would have three stencils being computed at once. Not all of the necessary
input arrays for the stencil are shown in red.

Input Arrays Output Arrays Dependency Graph

We can project solutions from coarser grids onto finer grids using the Taylor series approximation between
grid points. After reaching self consistency on the coarse grid (finding the fixed point), a new iteration can
be started on the finer grid with a better guess than would otherwise be possible. The first step on the finer
grid shows a jump in the self consistent residual error (red line). We are current working on understanding
this jump and reducing it. Even with relatively large jumps, a savings of 35% is possible for a transition from
0.3 to 0.15 to 0.1 versus doing the entire computation at 0.1.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

10 4

0.001

0.01

0.1

1

Normalized time

Lo
g

se
lf

co
ns

is
te

nt
re

si
du

al h=0.3

h=0.15

h=0.1

h=0.1

Thread A

Thread B

1

2 3

4

5
6

22

23 24

25

26

28

27

29

30

31

32

33

34

One goal of this project is moving toward a thread based architecture
with fewer MPI processes running on the compute node. Each thread
uses shared data, synchronizing with simple latches in most cases,
where the data is arranged to minimize false sharing in the CPU cache.
In the figure above, given the ordering of grid point arrays, false sharing
can only occur between the data in the last array handled by thread A
and the first array handled by thread B. We have observed the latch
based synchronization used in the matrix vector product scaling all the
way up to 60 threads on a Xeon Phi coprocessor.

The most elementary implementation of the high order finite differences Laplacian
operator uses an index array to sample the points needed in the stencil around the
point of interest, shown to the left. The code for this is not easily vectorized, and if
the compiler does not unroll loops to the point that it is handling multiple stencils at
once, then pipelining is harder to acheive in the floating point unit. We are working
on a method to generate optimized code at runtime, exploiting knowledge of the
domain's shape, to get better vectorization, cache reuse and pipelining. The
programmer writes a metaprogram in C++ that compiles to machine language at
runtime where characterisitics of the CPU such as depth of the floating point pipeline,
cache sizes, etc. are input parameters. A preliminary implementation of this idea
showed the Laplacian stencil running at around 50% of peak performance for a
realistic problem and scaling linearly on Hopper compute nodes, which have 24 cores.

1. Institute for Computational Engineering and Sciences, University of Texas at Austin
2. Department of Computer Science and Engineering, University of Minnesota

1 1 2

