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1. A coefficient dependent on scales

The traditional, well-tested hyperviscosity (HV) operator for uniform meshes is

given by

∂Q

∂t
= ν∆2Q, ν = C(∆xunif)

s,

where ∆xunif is an average grid length and s is set to 3.2 or 4.0.
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Figure 1: Defining scales for hyperviscosity, non-uniform grids

For the spectral element method, we compare two approaches for hyper-

viscosity on unstructured variable resolutioin grids:

1. Scalar approach. The simplest extension of the uniform mesh hypervis-

cosity. We use a spatially varying coefficient ν scaled based on the largest

of the two length scales within each element. In regions of uniform resolu-

tion (low or high), this coefficient will match what is used on uniform grids.

High resolutions use less dissipation, resolving finder scales. In transition

regions, ν changes proportional to the element length scales.

ν(x, y) = C max(∆x, ∆y)s

∂Q

∂t
= ν(x, y) ∆2Q (1)

2. Tensor-based approach. Use a tensor coefficient V . Within each spectral

element, let D be the derivative of the map from the spectral element to

the reference element (unit square). The eigenvectors of DTD give the co-

ordinate system which diagonalizes the Laplace operator expressed in the

reference element:

DTD = E

(

λ1 0
0 λ2

)

ET

with eigenvalues λ1 ∼ ∆x2 and λ2 ∼ ∆y2. We then take

V = DE

(

λ
1+s/2
1
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2

)

(DE)T

∂Q

∂t
= (∇ · V ∇)(∇ · ∇)Q, (2)

The tensor formulation preserves the length scaling used on uniform grids

while also accounting for both ∆x and ∆y length scales which can be differ-

ent in distorted elements which appear in the mesh transition region.

Advantages of tensor-based hyperviscosity:

1. Scale-aware at every quadrature point

2. Better theoretical and practical CFL estimates

3. Improved robustness with respect to underlying meshes

4. In numerical studies, no oscillations or mesh imprinting present

5. Theoretical convergence rates are confirmed

2. New technique for mesh generation

We compare two mesh-generating packages.

Figure 2: Different approaches to refined conforming quadrilateral meshes:

Highly distorted grid by CUBIT

Figure 3: Different approaches to refined conforming quadrilateral meshes:

Low-connectivity grid by SQuadGen

( a ) CUBIT approach ( b ) SQuadGen approach

Figure 4: Nodes with a high valence (left) lead to distorted quadrilaterals. More

uniform quadrilaterals with a wider transition region (right).

For more on SquadGen software, see Paul Ullrich’s poster.

Advantages of low-connectivity meshes and SQuadGen:

1. Less distorted elements lead to less expensive computations and to solu-

tions less contaminated with numerical noise

2. SQuadGen produces low-connectivity grids for conforming quadrilateral

meshes on a sphere. Capable of developing meshes with only 3-4-5-

valence nodes.

3. Flexible smoothing options

4. Input via PNG format

3. Shallow water test cases 2 and 5

( a ) Error of a reference solution obtained with ∆x = 3◦

( b ) Scalar HV, CUBIT grid ( c ) Tensor HV, CUBIT grid

( d ) Scalar HV, SQuadGen grid ( e ) Tensor HV, SQuadGen grid

Figure 5: Error plots for SW test case 2, (b), (c), (d), and (e) have ∆xcoarse = 3◦

and ∆xfine = 0.375◦. In case of scalar HV, plots (b) and (d), the refined region

introduces significant numerical noise. While a better quality mesh in (d) im-

proves the outcome, local scales in the refinement are not resolved. Contrary

to this, simulations with tensor HV in (c) and (e) are much closer to the uniform

solution in (a). In addition, the error in the resolved region is significantly closer

to zero.

( a ) Reference solution with ∆x = 0.125◦, zoomed to the region of a mountain

( b ) Scalar HV, CUBIT grid ( c ) Tensor HV, SQuadGen grid

Figure 6: Vorticity plots for TC5, (b) and (c) have ∆xcoarse = 3◦ and ∆xfine =
0.375◦. Note a prominent numerical noise and mesh imprinting in plot (b) and

smooth contours in plot (c).

( a ) Error for a simulation with uniform resolution and ∆xcoarse = 3◦

( b ) Scalar HV, CUBIT grid ( c ) Tensor HV, SQuadGen grid

Figure 7: Error vorticity plots for TC5, (b) and (c) have ∆xcoarse = 3◦ and

∆xfine = 0.375◦. While plot (b) has mesh imprinting and oscillations, plot (c)

presents errors near zero for the region within the refinement.
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Figure 8: Measuring effects of local refinement error on global errors for

SWTC2 and tensor-based hyperviscosity. We conclude that there is no im-

pact on the global l2 error. In case of tensor-based hyperviscosity, all four

error curves, for the uniform resolution, x2- (scales vary from ∆x to ∆x/2), x4-

(scales vary from ∆x to ∆x/4), and x8- (scales vary from ∆x to ∆x/8) refine-

ments, are practically indistinguishable. The errors are controlled by coarse-

region scales as they are practically equal to the errors of corresponding uni-

form resolutions. The convergence rates for studies in this plot are close to

4.0, which coincides with the theoretical rate.
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Figure 9: Measuring effects of local refinement error on global errors for

SWTC5 and tensor-based hyperviscosity. Figure confirms that presence of

the refinement has no negative impact on global l2 errors. In fact, the errors

are reduced due to the placement of the refined region (over a mountain). The

convergence rates slow down as the error approaches the uncertainty in the

reference solution.

4. Conclusions

This work improves CAM-SE’s variable-resolution

capabilities. Combined settings of meshes with

low-valence nodes and tensor-based hyperviscos-

ity as a dissipation prove that

(1) presence of a refined region has no impact on

the large scales of the low-resolution region

(2) fine scales in the highly resolved region are

fully recovered.
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