

Introduction	
 Experimentally observed tungsten (W) surface dynamics under combined 	 To parameteriz
thermal/particle fluxes (b) 10 ²⁶ He/m ² Tokunaga, Doerner et. al., J. Nuc. Mater. 92, 313-316 (2003) H. Iwakiri He:1250 K. 10 b	atomistic simul
T < 700 K 100 eV, 933 K 100 eV, 933 K	 Using a combinat bulk diffusion of sr
Baldwin, er al., Nucl. Fusion 48: 035001 (2008)= 300 s 2000 s 4300 s 9000 s 22000 s 900 K < T < 1900 K 900 K T < 1900 K	 With AMD: temperatures
5 x 10 ²² m ⁻² s ⁻¹ , 8 eV, 1120 K 100 nm N. Ohno et al., in (AEA-TM, Vienna, 2006 fuzz / coral M. Baldwin et al., NE 48(2008)035001. 3	 With MD: Co Assess whet
$I = 10^{-10} I =$	 Pathways become many intermediat role in the diffusion
 Small-scale MD simulations reveal continual bubble formation, bursting, and W surface modification 	
 Observed near-surface structure: He cluster/bubble distribution (blue spheres), W adatoms (purple spheres), and sub-surface W atoms (grey spheres). 	Barrier from TAD: 0.358 eV 0.25 0.2 0.15
 Configuration shown after ~2x10²⁰ He/m², but with a very high implantation rate of 10²⁷ He/(m²s), i.e., about 5 orders of magnitude too large! 	0.1
Initially perfect crystal (atomistically smooth surface) • Repeated formation and subsequent	-0.4
 bursting/rupture of over-pressurized gas bubbles observed. How does surface morphology and implantation rate impact bubble formation? Initial tendril – cylindrical morphology (atomistically smooth surface) 	nergy per He atom (eV/He) 9.0- 6.0- 8.0- 6.0- 1 -
Solid Surface Modeling Roadmap	e -1.1 -
 Low-temperature (< ~1000 K) regime of low energy (~100 eV). He (later mixed He-H) plasma exposure to tungsten: focus on bubble formation, growth, and over-pressurization leading to tungsten surface morphology changes. 	-1.3 -1.3 1 2 3
Key Physics Questions:	
 Rate effects (explored by AMD, MD and KMC simulations) versus continuum reaction-diffusion model predictions and experimental measurements Validity of dilute-limit approximation in concentrated He bubble populations Introduction of drift (driven diffusion) into transport formalism due to interaction of clusters with sinks such as surface and grain boundaries Multiscale integration 	 At higher temperate multiple minima exe For all cluster size cluster mobility c accounted for b
Dilute limit (Additional) collective phenomena (mixed species, higher T, etc.)	pathway identified AMD, over the temperature range.
Diffusion, drift, aggregation theory	• The non-Ar
Visualization/ Post-processing "Integrated bubble wolution modeling" & inter-comparison (bubble dynamics, etc.) Continuum models with explicit presence of bubbles that need to be discretized (front-tracking) Eventual development of model reduction (UQ) to	can be captured generalized tra state theory that ac for intermediate (green curve on the
Comparison with data. What observables?	 Larger clusters (≥7) nucleus by the creating vacancy, He cluster
Paraspace (initially) - XOLOTL-PSI	 Our combined MD mechanisms of the
Both input Near surface to bulk (multiscale linking) matching matching	Relevant diffus

Plasma-Surface Interactions (PSI): Atomistic Insights into He Transport and Agglomeration in Pacific Northwest Plasma-Exposed Tungsten

Lin Hu¹, Luis Sandoval², and PSI-SciDAC Team

¹Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003 ²Theoretical Division T-1, Los Alamos National Laboratory, Los Alamos, NM 87505

Project web site: https://collab.mcs.anl.gov/display/PSIscidac/

been characterized over a wide range of temperatures

- derived based on MD simulations of He-atom impingement onto W surfaces

Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.