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• Experimentally observed tungsten (W) surface dynamics under combined 
thermal/particle fluxes 

• Small-scale MD simulations reveal continual bubble formation, bursting, and 
W surface modification 

Initially perfect crystal 
(atomistically smooth surface) 

Initial tendril – cylindrical morphology 
(atomistically smooth surface) 

• Observed near-surface structure: He 
cluster/bubble distribution (blue spheres), W 
adatoms (purple spheres), and sub-surface 
W atoms (grey spheres).  
 

• Configuration shown after ~2x1020 He/m2, but 
with a very high implantation rate of 1027 
He/(m2s), i.e., about 5 orders of magnitude 
too large! 

• Repeated formation and subsequent 
bursting/rupture of over-pressurized 
gas bubbles observed. 
 

• How does surface morphology and 
implantation rate impact bubble 
formation? 

Solid Surface Modeling Roadmap 
• Low-temperature (< ~1000 K) regime of low energy (~100 eV). 
• He (later mixed He-H) plasma exposure to tungsten: focus on bubble formation, 

growth, and over-pressurization leading to tungsten surface morphology changes. 

Key Physics Questions: 
 
• Rate effects (explored by AMD, MD and KMC simulations) versus continuum 

reaction-diffusion model predictions and experimental measurements 
• Validity of dilute-limit approximation in concentrated He bubble populations 
• Introduction of drift (driven diffusion) into transport formalism due to interaction of 

clusters with sinks such as surface and grain boundaries 
• Multiscale integration 
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Dynamics of Mobile He Clusters near W Surfaces: Drift due to Surface Segregation and Near-surface Kinetic Processes 

He Agglomeration in Near-Surface Regions of Polycrystalline Tungsten: Surface and Grain-Boundary (GB) Segregation 

Setup of the large-scale MD simulations: 
• GB type: ∑3 <101> {121} symmetric tilt GB with a W{111} free surface 
• Simulation cell size: 50 nm x 50 nm x 18 nm 
• Number of W atoms in simulation cell: 2.4 million 
• Distance between GBs: 25 nm 
• Rate of He atom insertion: 1 every 10 ps  
• Implantation depth distributions for the insertion of He atoms into the W matrix 

derived based on MD simulations of He-atom impingement onto W surfaces 

• MD results show that GBs and W surface serve as sinks for He atoms 
 

• Calculations of He small-cluster energetics as a function of cluster distance 
from grain boundaries in W and from the W surface aid in providing 
thermodynamic and kinetic interpretations of the He bubble formation 
processes observed in the MD simulations 

Schematic representation of supercell with 
two GBs for large-scale MD simulations 

He depth distribution from MD 
simulations of He implantation 

Energy profile of tri-He cluster 
near GB  

Distribution of He atoms from large-scale MD 
simulations of He aggregation in polycrystalline 
tungsten. (W atoms not shown) 

T=1000K 

T=1000K 

Di-He cluster kinetic processes near W(100) surface: 

• This analysis sets the stage for bridging atomistic and continuum 
modeling and simulation toward a rigorous and quantitative description of 
drift and diffusional transport of such He clusters in near-surface W 
regions 

• Further analysis provides the required closure relations for the drift and 
diffusive fluxes and for the cluster reaction rates in continuum cluster 
mass transport (drift-diffusion-reaction) models through predictions of: 
diffusion coefficients, segregation potentials as a function of distance from 
the surface, and reaction rate constants for the surface/near-surface 
kinetic processes. 

• Molecular-dynamics simulations and analysis: Tri-He and di-He cluster kinetic 
processes shown near W(100) surface 

• Mobile He  clusters  migrate to the near-surface region under the action of the 
thermodynamic driving force (drift) for surface segregation 

• Multiple kinetic processes occur at the surface/near-surface region, including 
trap mutation, cluster dissociation, and He desorption from the surface 

• Identification and characterization of kinetic processes for parameterization of 
coarse-grained cluster dynamics models 

• Motivation for this study: The diffusional transport of mobile He clusters mediates the evolution of surface morphology and the structural evolution of the 
near-surface regions of the plasma-exposed material. 

• Molecular-statics computations: Energy profiles of different-size He clusters near W surfaces indicate that the surface is a sink for He clusters. Case: W(100)  

Dissociation 
Desorption 

• Large-scale MD simulations of He aggregation in a model of polycrystalline tungsten reveal transport of He atoms (drift-diffusion), their aggregation to 
form He bubbles, and the growth of He bubbles. 

surface GB1 GB2 

• As shown in the MD 
simulation on the left, once 
clusters undergo trap 
mutation, they act as bubble 
nuclei. Subsequently, these 
bubbles grow by absorbing 
mobile He clusters.  

• To understand the effect of 
the He absorption rate on 
the bubble evolution, we 
perform AMD simulations of 
the growth of single bubbles 
at carefully controlled rates.  

• Addition of He atoms increases 
the pressure in the bubble, 
causing the nucleation of <111> 
interstitials loops. The process 
continues until the bubble 
bursts (F. Sefta, N. Juslin, and 
B. D. Wirth, submitted to 
JPCM). 

• Our results indicate that the 
average bubble size right before 
bursting is very sensitive to the 
growth rate: decreasing the 
growth rate leads to bursting at 
smaller sizes.  

• To explain this behavior, we 
tracked (a) the motion of the 
bubble’s center of mass and (b) 
the maximum depth reached by 
He atoms as a function of the 
number of He atoms. 

• Slow growing bubbles grow 
preferentially towards the 
surface, while faster growing 
bubbles grow more isotropically 
(c).  

• In the latter case, bursting is 
delayed, as more He atoms are 
required for the bubbles to 
reach the surface and burst. 

 

• In addition to the migration behavior of small He clusters, the 
behavior of large He bubbles is critical for parameterizing 
reaction-diffusion models and understanding the morphological 
evolution of the surface. 

• We use parallel replica 
dynamics (ParRep). ParRep 
allows for the temporal 
parallelization of the discrete 
state-to-state dynamics and, 
therefore, greatly increases the 
time scale amenable to direct 
simulation.  
 

• For example, by using 12000 
cores, we were able to reach 
simulation times of 7.25 µs, 
which allows the simulation of 
realistic growth rates. 

• To parameterize macroscopic reaction-diffusion models, we rely on 
atomistic simulations to identify unit transport/reaction mechanisms. 
 

• Using a combination of MD and Accelerated MD (AMD), we have investigated the 
bulk diffusion of small He clusters, with sizes ranging between 1 and 8. 

• With AMD: Find and analyze the dominant diffusion pathways at low 
temperatures 

• With MD: Compute the diffusivity of the clusters between 250 and 1400 K. 
Assess whether the low-T kinetics hold at operation temperatures 

 

• Our combined MD/AMD approach provides a comprehensive picture of the unit 
mechanisms of the diffusion of small He clusters in bulk W: 

 
•  Relevant diffusion pathways have been identified 

 
•  Diffusivity has been characterized over a wide range of temperatures 

 

• The cluster migration 
energy is highly non-
monotonic vs. cluster 
size: larger barriers 
at sizes 4 and 6, but 
a small barrier at size 
5. 
 

• In contrast, the 
increase in binding 
energy is monotonic. 

 

Kinetics 

Diffusion Pathways and Energetics 
 

• Pathways become increasingly complex with cluster size. They typically contain 
many intermediate states, suggesting that entropic effects may play an important 
role in the diffusion dynamics. 

 
Diffusion 

pathway for He6. 
A complete hop 

involves 4 
intermediate 

states. 

• For all cluster sizes, the 
cluster mobility can be 
accounted for by the 
pathway identified with 
AMD, over the entire 
temperature range. 
 

• The non-Arrhenius 
temperature dependence 
can be captured by a 
generalized transition-
state theory that accounts 
for intermediate states 
(green curve on the right). 

Tri-He cluster kinetic processes near W(100) surface: 

• At higher temperatures, relevant for reactor conditions, the entropic effects of the 
multiple minima exert themselves. 

 

 
• Larger clusters (≥7) quickly experience trap mutation, i.e., the formation of a bubble 

nucleus by the creation of a W vacancy-interstitial (Frenkel) pair. Once bound to a 
vacancy, He clusters are essentially immobile.  
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