
Multigrid with HYPRE for Lattice QCD
Andrew Pochinsky

Massachusetts Institute of Technology
avp@mit.edu

Abstract

In lattice QCD calculations, a significant amount of computation time is spent in
solving the Dirac equation. Krylov solvers exhibit critical slowing down when the
lattice is large and simulation parameters are in a physically interesting region.
Multigrid approach promises robust linear solver algorithms with substantial
speedup compared to other iterative methods. We present a tool that connects the
HYPRE’s [1] collection of linear solvers with the body of USQCD code [2] thus
allowing one to explore the space of multigrid algorithms while using actual large
gauge configurations and corresponding Dirac operators.
This presentation describes a joint project between the SciDAC–3 project
Computing Properties of Hadrons, Nuclei and Nuclear Matter from Quantum
Chromodynamics and the FASTMath SciDAC Institute.
Our FASTMath collaborators are Rob Falgout and Chris Schroeder of LLNL.

Lattice QCD

x

(1+γμ)Uμ,x(1–γμ)U†μ,x,μ̂

(1+γν)Uν,x

(1–γν)U†ν,x,ν̂

Lattice QCD is one of the
most demanding computational science
fields. To contribute significantly to the
national NP program, LQCD calculations
must move to the larger lattice sizes
and simulation parameters approaching
the physical point. New algorithms
for solving the discretized Dirac equation
need to be developed in order to avoid
critical slowing down. The Dirac equation
is essential both for configuration
generation and calculating observables
directly related to experiment.
Presently several formulations of fermion actions are used in different areas of the
USQCD NP program.

• Staggered fermions
• Wilson–clover fermions
• Domain wall fermions (several kinds)

Application of accelerated solver to lattice quantum field theories other than QCD
is also of interest.

Multigrid

Multigrid methods form a group of algorithms for solving systems of linear
equations using decomposition of the vector space into a hierarchy of subspaces.
They are especially useful for systems related to discretized linear differential
equations and are an example of techniques very useful in problems exhibiting
multiple scales of behavior. Multigrid methods are essentially linear solvers and as
such, they can be used both as solvers and as preconditioners.
The main idea of multigrid is to improve the convergence of a basic iterative
method by using a solution of a smaller (coarse) related problem as a guess to the
solution of the original problem. This principle is similar to interpolation between
coarser and finer grids. The typical application for multigrid is in the numerical
solution of elliptic partial differential equations in two or more dimensions.
Multigrid methods can be applied in combination with any of the common linear
solver techniques. In many cases, multigrid methods are among the fastest
solution techniques presently known. Unlike other methods, multigrid methods are
general and surprisingly robust. They do not depend on special properties of the
equation.

LQCD Software

Whe USQCD software suite enables lattice QCD computations to be performed
with high performance across a variety of architectures, including leadership
facilities, custom and emerging architectures, and commodity clusters. This
software is made up of software libraries that can be used by higher–level
applications.

Chroma CPS MILC Qlua

Dslashes MDWF QDPQOP QUDA

QDP/C,  QDP/C++ QIO

QMP QLA QMT

We have chosen Qlua [3] as our development platform for its simplicity and
modularity.

HYPRE

The FASTMath SciDAC Institute develops HYPRE [1], a software library of high
performance preconditioners and solvers for the solution of large, sparse linear
systems of equations. The primary goal of the HYPRE library is to provide users
with advanced parallel preconditioners. The present project uses the library’s
parallel multigrid solvers for structured grids. The HYPRE’s conceptual linear
system interfaces are further abstracted via the HQL intermediate layer to better
map into lattice QCD data types and operations.

4 CHAPTER 1. INTRODUCTION

Data Layout

structured composite block-struc unstruc CSR

Linear Solvers

GMG, ... FAC, ... Hybrid, ... AMGe, ... ILU, ...

Linear System Interfaces

Figure 1.1: Graphic illustrating the notion of conceptual interfaces.

• Finite Element Interface (FEI): This is appropriate for users who form their linear sys-
tems from a finite element discretization. The interface mirrors typical finite element data
structures, including element sti↵ness matrices. Though this interface is provided in hypre,
its definition was determined elsewhere (please email to Alan Williams william@sandia.gov
for more information). See Chapter 4 for details.

• Linear-Algebraic System Interface (IJ): This is the traditional linear-algebraic inter-
face. It can be used as a last resort by users for whom the other grid-based interfaces are
not appropriate. It requires more work on the user’s part, though still less than building par-
allel sparse data structures. General solvers and preconditioners are available through this
interface, but not specialized solvers which need more information. Our experience is that
users with legacy codes, in which they already have code for building matrices in particular
formats, find the IJ interface relatively easy to use. See Chapter 5 for details.

Generally, a user should choose the most specific interface that matches their application, be-
cause this will allow them to use specialized and more e�cient solvers and preconditioners without
losing access to more general solvers. For example, the second row of Figure 1.1 is a set of linear
solver algorithms. Each linear solver group requires di↵erent information from the user through the
conceptual interfaces. So, the geometric multigrid algorithm (GMG) listed in the left-most box,
for example, can only be used with the left-most conceptual interface. On the other hand, the ILU
algorithm in the right-most box may be used with any conceptual interface. Matrix requirements
for each solver and preconditioner are provided in Chapter 6 and in the hypre Reference Manual.
Your desired solver strategy may influence your choice of conceptual interface. A typical user will
select a single Krylov method and a single preconditioner to solve their system.

The third row of Figure 1.1 is a list of data layouts or matrix/vector storage schemes. The

To support LQCD astractions, two extensions are required to the HYPRE’s core:
• support for more than three spacial dimensions
• support for complex numbers

HQL

HQL is an abstraction software layer that glues HYPRE and LQCD codes together.
Its goal is to isolate design peculiarities of its respective clients from each other
and provide necessary translation services. Allowing LQCD code to talk to HQL
instead of HYPRE simplifies software design and provides a lightweight
mechanism for a future transition to high performance MG inverters if necessary. It
also preserves QCD domain-specific symmetries.

High Level Interfaces

Linear Operators
For a linear operator, one needs to define its stensil structure and non-trivial
gamma–matrix and gauge factors. Domain wall fermion operator may be
described either as 5-d or in 4-d using an extra flavor attribute (not shown).
function wilson_hql(U, kappa)

local op = {}
local L = U[1].lattice
local hg = qcd.hql{Lattice = L, Colors = 3}
local i, j
local stencil = {}
local function make_offset(n, d)

local offset = {}
for j = 1, #L do offset[j] = 0 end
offset[n+1] = d
return offset

end
local offset = make_offset()
stencil[#stencil+1] = {offset = offset}
for i = 0, #L - 1 do

offset = make_offset(i, 1)
stencil[#stencil+1] = {offset = offset,

gamma = -kappa * (1 - gamma{mu=i}),
U = U[i+1]}

offset = make_offset(i, -1)
stencil[#stencil+1] = {offset = offset,

gamma = -kappa * (1 + gamma{mu=i}),
U = U[i+1]:adjoin():shift(i, "from_backward")}

end
local WM = hg:matrix(stencil)
function op:vector(v) return WM:vector(v) end
function op:export(v) return v:export() end
function op:apply(v) return WM:apply(v) end
function op:dot(a,b) return qcd.dot(a,b) end
return op

end

Primitive Solvers
A Qlua mechanism for solvers and preconditioners high–level description is
straightforward; its simplicity and expressive power need to be balanced for
optimal useability. The design and the implementation are work in progress.

Solver calculus
It appears worthwhile to provide a way to combine preconditioners and solvers as
well as to chain preconditioners, thus providing a kind of solver calculus to the
user. Details of both the design and the implementation are being worked out.

References

[1] http://computation.llnl.gov/casc/linear_solvers/sls_hypre.html

[2] http://www.usqcd.org/

[3] https://usqcd.lns.mit.edu/redmine/projects/qlua_code

SciDAC–3 PI 2013


