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Frontiers of predictive computing
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A DOE report on Computational Materials Science (2010):

Materials Genome Initiative for Global Competitiveness (2011):




The team

So Hirata (Chemistry, UIUC) - Lead PI Lucas Wagner (Physics, UIUC) - Co-lead Pl

Hirata i5 a theoretical fcomputational chemist and
an expert in electron-carrelation theories for
molecules and solids. He is the primary author of
the computer-generated, high-rank electron-
correlation modules in DOEs massively parallel
MWCHEM suite of software, implemeting several of
his ariginal methods.

Wagner is the principal author of the quantum
Monte Carlo program, OWALK, with which he has
performed predictively accurate calculations on
strongly correlated systems.

Peter Abbamonte (Physics, UIUC) David Ceperley (Physics & NCSA, UILC)

Abbamonte, an experimental condensed-matter
physicist, brings an invaluable experimental insight
into the project. He is one of the ariginators of
resonant soft xX-ray scattering, with which he
discovered a Wigner crystal in doped spin ladders
and the charged stripes in copper-oxide
superconductors.

Ceperley is a theoretical /computational physicist
and an authority of quantum Momte Carlo (QMC). He
invented a number of QMC algorithms and is the
author of massively parallel QMCPACK software.

Garnet K.-L. Chan (Chemistry, Princeton) Brvan Clark (Microsoft Station Q)

Chan is a recognized expert in strong correlation
theaories including density matrix renormalization
group (DMRG), tensor networks, and density matrix
functional theory. He has, in particular, established
DMRG as a practical, powerful tool for strongly
correlated molecular electronic structures.

Clark has considerable experience in both
conventional quantum Monte Carlo (QMC) and naovel
extensions such as QMC in the Hilbert space. He has
developed a large-scale parallel algorithm of QMC
in PIMC++.

Shiwei Zhang (Physics, WEM)

Ihang specializes in computational condensed
matter physics and materials science. Zhang is a
pioneer in the use of quantum Monte Carlo (QMC) in
the Hilbert space for strong correlation. He is the
inventor of the phaseless auxiliary field QMC.

Shinsei Ryu (Physics, UIUC)

Ryu specializes in mathematical theories of strong
correlation and ather condensed phase electronic
structures. Ryu is a pioneer in the use of
entanglement entropy in classifying topological
phases of matter and has predicted the fractional
topological insulator in two dimension.




Project goals
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Theories

AFQMC, MC-MP2; DMFT

(Finite-T) MP, CC, RPA, etc.; QMC; DMRG, TN; FCIQMC,

N
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Software

Algorithm redesign; massive parallelism; fast integrals J

-
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Applications — experimental verification A

Metals; (copper oxide) superconductors;
graphene; molecular crystals; Pelerls systems
and Luttinger liquid; Mott-Hubbard systems;
spin liquid

/

Abbamonte



Theories

Finite-temperature
MP2, CCD, RPA

Monte Carlo MP2

TN (MERA, PEPS)
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DMC, VMC



Schrodinger equation

for water
articleimensional partial differential equation
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Systematic many-body methods

Density Functional Theory Molecular Orbital Theory

Local functional

Gradient-corrected Hartree-Fock Theory
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Hybrid HF functional
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MP2
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KA member of a systematic series of \

approximations converging toward exactness.

G-(r e Can describe covalent, ionic, hydrogen-bond,
i 2 L . . i

and dispersion interactions.

—0 e Size consistent and thus applicable to solids.

e Accurate energy bands and band gaps.

* The operation cost grows as O(n>), where n is
the number of orbitals.

e The memory cost grows as O(n?) to O(n%).
Parallelization is difficult.
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Systematic many-body methods

Density Functional Theory Molecular Orbital Theory

ocal functional
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Monte Carlo

E=|f(x)dx= f@iﬂ)ﬂ’iﬁx‘g

function  \etropolis
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Requirement 1: the weight function g is analytically integrable

Ig(x)dx =N

Requirement 2: the weight function g behaves like the integrand f

f(x)/ g(x)
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Reunexcited states difficult.

Quantum Monte Carlo

HY = EY

iKGiveS the best wave function and energy in \

the variational sense, which is usually nearly
exact.

Easily and efficiently parallelized.

Nearly zero memory cost.

Has statistical errors, which decay slowly as
O(N~"2) with the number of MC steps (N).
Calculations of structures and properties
(including energy bands) and applications to

Y dr
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 Research highlights of 2012-2013

— QMC for copper oxide superconductors
— Auxiliary field QMC for band gaps
— Full CI QMC for excited states

e Monte Carlo MP2 and MP3

« MP2 for molecular crystals: solid-solid phase
transition in CO,



Research Highlights of 2012-2013

QMC for copper oxide superconductors

Wagner and Abbamonte, to be published (2013)

5 60/ o-o

% 10 20 30 40 50 60 70
LaZCuO4 Number of cores in thousands

DFT (LDA) 0.82

DFT (GGA) 0.6 0.5
QMC 0.15 0.62
Expt 0.13 0.6

For more details, please visit the poster by Lucas Wagner 13



Research Highlights of 2012-2013

Auxiliary field QMC for band gaps

Zhang et al., to be published (2013)

DFT (LDA) 0.67 DFT (LDA)
GW 4.8 GW 2.4,2.6,2.8
QMC 3.97 QMC 3.26

Expt 3.7,3.87,4.0,4.3 Expt 3.3 -3.57
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Research Highlights of 2012-2013

Full Cl QMC for excited states

Booth and Chan, JCP Comm (2012)

—  FCIQMC
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Monte Carlo MP

Willow, Kim and Hirata, JCP (2012), JCP (2013), under review by JCTC (2013)

MP2, MP3, CCSD,
CCSD(T) Wave function

Monte Carlo MP
FCIQMC

correlation

DMC, VMC <& ~
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Monte Carlo MP2

Willow, Kim and Hirata, JCP (2012)

Very long O(n%) summation of products of 2 x 6-dimensional integrals

oCC. VIT.

E® _ ZZ (ab|ij){ijlab)

11a68+8—1?—%

a

Explicit two-electron integrals

e i | 2.(6)0,(5)- 0. (6)0(5.) i, dr, [ 0,(5.)0, (5,)- 0. (5} (x.) dr. dr,

E(z) z Z 12 34

i,j ab &+e,—&,— &
Laplace transformation of the denominator
occ. Vir. 1 1 ©C Nete—e,—g )
E9 =33 [ 0.(5)0, () —0.(5)0, (5)dn dn, [ 9,(5)0, (1) — 0. (5 ), () di, [/ = ar
i,j a b 12 34
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Monte Carlo MP2

Willow, Kim and Hirata, JCP (2012)

o= o= [ (o= 0 it

functlon Metropolis

Requirement 1: analytically integrable J.g(x)dx =N
Requirement 2: cancellation of singularities f(x)/g(x)

E(Z):_J-m”-oooG(rl,r3,r)G(rz,r4,’£)G+(r1,r3,T)G+(r2,l‘4,r)drlmdr4df
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Monte Carlo MP2

Willow, Kim and Hirata, JCP (2012)

Nitrogen 6-31G** Water monomer, dimer, trimer 6-31G**

0 2 4 6 8 10
MC steps / 10’ MC steps / 10"

0 20 40 60 80
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6;2)/Eh

Monte Carlo MP2 for self-energies

Willow, Kim and Hirata, JCP (2013)

HOMO & HOMO-1 of H,O Efficiency
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Dyson self-energies (quasiparticle energies) for
multiple states obtainable from a single MC run



Real-space Green’s function

Willow, Kim and Hirata, to be published (2013)




Monte Carlo MP3

Willow, Kim and Hirata, to be published (2013)

Water 6-31G**

Errors in E® / mE,

0 5 10 15 20
MC steps / 107

20 T | T
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Errors in E® / mE,

Redundant-walker MC-MP2

Willow, Hermes, Kim and Hirata, under review by JCTC (2013)

Benzene 6-31G**
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m = 2: 2 electron walker pairs
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m = 10: 10 electron walker pairs
Cost: 5 times
Benefit: 10 x 9/ 2 = 45 times MC steps 23




Electron affinity / eV

Massively parallel MC-MP2

Willow, Hermes, Kim and Hirata, under review by JCTC (2013)

Cgo CC-pVDZ on 320 processors of Blue Waters

N <X

NVIDIA.

Monte Carlo MP2
----- Experiment
HF

0.5 1 1.5 2 2.5 3
Monte Carlo steps / 10

m = 120: 120 electron walker pairs
Cost: 60 times
Benefit: 120 x 119/ 2 = 7140 times MC steps
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Raman intensity IR intensity

INS intensity

MP2 for molecular crystals
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Embedded-fragment approach

Hirata et al., MP (2005); Kamiya, Hirata, and Valiev, JCP (2008)

N-body (N > 2) Coulomb in point-charge or dipole approximation

Pair energy in the
presence of self-

1 and 2-body _ _
Coulomb consistent atomic
Exchange charges or dipoles
Correlation

E=Y E+Y(E,—E-E)+0

i=1 i<j



Molecular crystals

Hirata, JCP (2008)

Energy per unit cell

1 +L
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Linear scaling regardless of gradients algorithms (analytical vs. numerical)
Long-range electrostatic correction essential for cell gradients

Energy Hessian
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x and y need not be in-phase coordinates: phonon dispersions can be obtained



Finite pressures and temperatures

Li, Sode, Voth and Hirata, under review by Nature Comm (2013)

Gibbs free energy per unit cell
G=E+E_ +P(abc)-TS

For an orthorhombic unit cell

Partition function

,_ HH CXP(_“’ik,. /ZkBT)

i K l—exp(—a)ik_/kBT)

Zero-point energy, entropy, and heat capacity

o g g2 Z S__a(kBﬂnz) : AE+E,)
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Phase transition in solid CO,

Li, Sode, Voth and Hirata, under review by Nature Comm (2013)
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Phase transition in solid CO,

Li, Sode, Voth and Hirata, under review by Nature Comm (2013)
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Phase transition in solid CO,

Li, Sode, Voth and Hirata, under review by Nature Comm (2013)

— Experiment (Phase 1)
—— Experiment (Phase lll)
= MP2 (Phase I)
=== MP2 (Phase Ill)
i %o
.a&_..
18.0 GPa
2
R
/.\;6 L2
%
14.5 GPa
A

100 150 200 250 300 350 400



Phase transition in solid CO,

Li, Sode, Voth and Hirata, under review by Nature Comm (2013)
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