

Computational studies of vortex dynamics and pinning effects in high-Tc superconductors

Andreas Glatz, *Materials Science Division*¹, *Argonne National Laboratory* **Dmitry Karpeev**, *Mathematics and Computer Science Division*², *Argonne National Laboratory*

Igor Aronson¹, George Crabtree¹, Alexei Koshelev¹, Todd Munson², Ivan Sadovsky¹, Jason Sarich², Stefan Wild²

http://www.oscon-scidac.org/

Part I: Ginzburg-Landau solver on regular meshes with GPUs

- Introduction
- Meshing & Implementation
- Examples & Application
- Part II: Adaptive mesh solver & Optimization
- Periodic boundary conditions
- Adaptive refinement
- Sensitivity

see Poster 31.2

Computational studies of vortex dynamics and pinning effects in high-Tc superconductors

see Poster 31.1

Basic equations

Time dependent GL equations:

$$\frac{\partial \Psi}{\partial t} = -\frac{\delta \mathcal{F}_{\rm GL}}{\delta \Psi^*}, \ \frac{\delta \mathcal{F}_{\rm GL}}{\delta \mathbf{A}} = 0$$

$$u(\partial_t + i\mu)\psi = \epsilon(\mathbf{r})\psi - |\psi|^2\psi + (\nabla - i\mathbf{A})^2\psi + \zeta(\mathbf{r}, t)$$

$$\kappa^2\nabla \times (\nabla \times \mathbf{A}) = \mathbf{J}_n + \mathbf{J}_s + \mathcal{I},$$

$$\mathbf{B} = \nabla \times \mathbf{A}, \quad \mathbf{E} = -\frac{1}{c}\partial_t \mathbf{A} - \nabla \mu$$

Coupled system for ψ and A: ψ complex order parameter characterizing density of Cooper pairsAvector potential for magnetic field ζ and \mathcal{I} thermal fluctuations $\epsilon(\mathbf{r}) = \frac{T_c(\mathbf{r}) - T}{T} \rightarrow 0$ for $T \rightarrow T_c$ (critical temperature)

External current and pinning

Total current: $\mathbf{J}=\mathbf{J}_{s}+\mathbf{J}_{n}$ $\mathbf{J}=\operatorname{Im}\left[\psi^{*}(\nabla-i\mathbf{A})\psi\right]-(\nabla\mu+\partial_{t}\mathbf{A})$

critical current J_c:

- usually defined when voltage V is small percentage ± (here 1%) of free flow value V_{ff}
- *J_c* calculated e.g. by a bisection method
- separate dc electric field $\mu(\mathbf{r}) = -E_x x + \tilde{\mu}(\mathbf{r})$ $\psi(\mathbf{r}) = \tilde{\psi}(\mathbf{r}) \exp(iKx)$
- fix the current (ordinary differential equation for K)

$$J_{\text{ext}} = \text{Im}\left[\left\langle \tilde{\psi}^* (\nabla_x - iA_x)\tilde{\psi} \right\rangle\right] + K\left\langle |\tilde{\psi}|^2 \right\rangle + \partial_t K$$

this gives the voltage-current characteristics $E_x(J_{ext})$ through $\partial_t K = E_x$ which we use to obtain the critical current J_c

solve the Poisson equation for ¹ (follows from current conservation)

$$\Delta \tilde{\mu} = \nabla \cdot \operatorname{Im} \left[\tilde{\psi}^* (\nabla - i\mathbf{A}) \tilde{\psi} \right] + K \nabla_x |\tilde{\psi}|^2$$

ightarrow solved by super-relaxation with Jacobi iterations

$$\partial_{\tau}\tilde{\mu} = -\Delta\tilde{\mu} + \nabla\cdot\operatorname{Im}\left[\tilde{\psi}^{*}(\nabla - i\mathbf{A})\tilde{\psi}\right] + K\nabla_{x}|\tilde{\psi}|^{2}$$

Discretization

Here we consider the large- λ (or κ) limit:

- in this case our equation system reduces to the GL equation only, and we can keep the magnetic vector potential constant.
- we choose the gauge for the vector potential as $\mathbf{A} = -B_z y \mathbf{e}_x^{(0)}$ i.e. we have constant magnetic field in z-direction
- the current simplifies to

$$\mathbf{J} = \operatorname{Im} \left[\psi^* (\nabla - i\mathbf{A}) \psi \right] - \nabla \mu$$

time discretization

$$\psi_m - \psi_m^- = dt \left[\epsilon_m \psi_m^{\bowtie} - \frac{\beta}{2} |\psi_m|^2 \psi_m - \frac{\beta}{2} |\psi_m^-|^2 \psi_m^- + \gamma \left(\nabla - i\mathbf{A}\right)^2 \psi_m^{\bowtie} + \zeta_m(t) \right]$$

implicit Crank-Nicolson, with

$$\psi_m = \psi_{x,y,z}(t)$$

$$\psi_m^- = \psi_{x,y,z}(t - dt)$$

$$\psi_m^{\bowtie} = \left(\psi_m + \psi_m^-\right)/2$$

Laplacian

$$\left(\nabla - i\mathbf{A}\right)^2 \psi_m = \frac{U_j \psi_{i+1,j,k} + U_j^* \psi_{i-1,j,k} - 2\psi_m}{dx^2} + \frac{\psi_{i,j+1,k} + \psi_{i,j-1,k} - 2\psi_m}{dy^2} + \frac{\psi_{i,j,k+1} + \psi_{i,j,k-1} - 2\psi_m}{dz^2}$$

with
$$\mathbf{A} = -B_z y \mathbf{e}_x^{(0)}, \ U_j = e^{ijdxdyB_z}$$
 "link" variables

Simulation grid and pinning

Inclusions and defects are modeled by T_c modulation \rightarrow corresponding to normal metallic pinning centers: spatial variation of ²(r), i.e., the linear coefficient of the order parameter in the TDGL [positive in the superconductor, negative in the defect]

- arbitrary geometry, but
- on a regular grid (see posters)

Boundary conditions

• at surfaces, we use the no-current condition:

$$\partial_{x,y,z}\psi = 0$$
 and $\partial_{x,y,z}\tilde{\mu} = 0$

not applicable in x-direction if external current is applied

 \rightarrow this defines the Laplacian at the surface layers

• for $\lambda \rightarrow \infty$ and finite vector potential (as before) [no current], we can use periodic conditions in x- & z-directions and quasi-periodic in y-direction (y=0,...,L_y):

$$\psi_{x,L_y,z} = \psi_{x,0,z} e^{i2\pi B_z x L_y/L_x}$$

(challenge on unstructured/refined meshes)

• for finite λ (finite κ) we also have boundary conditions for the vector potential.

Iterative solver on GPUs

- due to the laplacian, an explicit time integration requires very small dt, i.e., it takes a long time to reach a steady state (easy to parallelize)
- due to the boundary conditions, we cannot use a FFT-based spectral solver for *arbitrary* magnetic field (for certain discrete values it is possible)

 $\mathcal{M}\Psi = \mathbf{b} \quad \Psi = (\psi_0, ..., \psi_{N-1})^T$ $\mathbf{b} = (b_0, ..., b_{N-1})^T$

→ use iterative solver for the implicit time integration

- the GL equation can be written in the simple form
- in order to invert the matrix M on a parallel machine, we use the Jacobi iteration

we write
$$\mathcal{M} = \mathcal{D} + \mathcal{R}$$
 where D=diag(M)
then iterate $\Psi^{(k+1)} = \mathcal{D}^{-1} \left(\mathbf{b} - \mathcal{R} \Psi^{(k)} \right)$
convergence criterion $\|\mathbf{r}_k\|_{\max} \ll 1$
residual $\mathbf{r}_k \equiv \mathbf{b} - \mathcal{M} \Psi^{(k)}$

This scheme is implemented for GPUs and requires for a typical dt=0.1 and dx=dy=dz=0.5, **4-5 iterations** only to reach an accuracy of 10⁻⁶

Example results for the structured grid solver

2D with surface, increasing field, 512² mesh points

3D with surface, relaxation in fixed field, 512³ grid points

Pinning by nanoparticles in YBCO films

best practical way to enhance critical currents

Isolated particles (BZO, BSO,Y211 ...) MacManus-Driscoll *et al.*, APL 2004 Song *et al.*, APL 2006 Gutiérrez *et al.*, Nat. Mat. 2007, APL 2007 Kim *et al.*, APL 2007 Yamasaki *et al.*, SuST 2008 Polat *et al.*, PR B 2011 Miura *et al.*, PR B 2011, SUST 2013

Columns; Columns + Particles Kang *et al.,* Science 2006 Varanasi *et al.,* SuST 2007, JAP 2007, APL 2008 Maiorov *et al.,* Nat. Mat. 2009

Miura et al., Phys. Rev., B 83, 184519 (2011)

Find the critical current without applied current

Find the pin-braking force to detach a vortex from a single nanoscale ellipsoidal inclusion

- key parameter in strong-pinning theory
- expect non-trivial dependence on defect size

 \rightarrow prepare the initial state for a single free vortex, relax to a steady state with inclusion, then slowly increase the current.

Simulation of pin-trapping and pin-breaking

size 50ξx200ξx25ξ, particle diameter 8ξ

Magnetic field protocol

Dynamics

Part I: Ginzburg-Landau solver on regular meshes with GPUs

- Introduction
- Meshing & Implementation
- Examples & Application
- Part II: Adaptive mesh solver & Optimization
- Periodic boundary conditions
- Adaptive refinement
- Sensitivity

Computational Challenge: Complexity

Typical simulation complexity

- Simulations of O(10⁶) timesteps for reliable V values
- Sample volumes O(10⁶)»³ + with cell mesh size O(10⁻¹)»
 → O(10⁹) degrees of freedom (DoF) per realization of pinning configuration μ.

Computational demand for 10³ flops per DoF per timestep

- 10 100h on full 100TFlop/s machine at peak for single μ
- Optimization increases demand by O(100)-O(1000) x

Computational requirements

- Leadership-class hardware for computational optimization of pinning structures
- State-of-the-art sampling techniques to minimize the number of probed µ
- Automated meshing of materials with embedded pinning structures
- Fully implicit time-integration to circumvent the timestep size limitation
- Modern iterative methods to solve O(1B) system at each timestep in optimal time.

Computational Challenge: Meshing

- mesh size needs to be smaller than the coherence length to capture order parameter variations
- near inclusions and defects mesh needs to be finer
 Adaptive meshing
- increased precision by adaptive mesh refinement near vortices

Optimization of pinning for maximal current

Determining optimal pinning landscape:

- Optimize critical current
- Minimize deviations from best case
- Min-max or min rms

 $\max_{\substack{\theta \\ \theta \\ }} \quad J_c(\theta) = \max_J \left\{ J : V_{\theta}(J) \le \delta V_{\rm ff}(J) \right\},\$ $\theta \in \Theta,$

Quasiperiodic BCs on unstructured meshes

- Implicit coupling not captured by the mesh topology
 - Point location
 - Constraints
 - Solver
 - Preallocation

Master-Slave contact Mortar Elements

Physics-based Preconditioning (aka PCFieldSplit)

- Use splitting to isolate the constraints
- Constraint elimination results in an SPD Schur complement S
- Precondition S
 - Matrix-free using block P
 - Assemble S
 - Use multigrid or domain-decomposition
- PETSc provides flexible splitting/recombination preconditioner machinery
 - PCFieldSplit

Scalable zero-current BC Simulation

- Highly scalable
- Fully implicit
- Responds to a variety of preconditioners
- Refinement-independent convergence rates

Adaptive Mesh Refinement

- AMR: memory/cycles savings *once* solution features have stabilized
- Mapping to/from refined/derefined geometry carries substantial overhead
- Needs to be used sparingly and intelligently
 - Mesh coarse geometry
 - Refined uniformly
 - Relax solution on uniformly refined mesh
 - Derefinement to focus on the features of relaxed solution

Shape Optimization

- Naïve sampling of all shape space slow
- Shape derivatives exist, accelerate convergence
- Require computation of J_c sensitivity p
- Need "reverse mode"
 - Preliminary investigation on a structured grid
- Geometry encoded by modulation of T_c
- Investigate simple case:
 - Single sphere of variable radius R

$$\begin{split} u(\partial_t + i\mu)p &= \epsilon(\mathbf{r})p - 2|\psi|^2 p - \psi^2 p^* \left(\nabla - i\mathbf{A}\right)^2 p + \frac{\delta\epsilon}{\delta R} \psi, \ p(T) = 0\\ \frac{dJ_c}{dR} &= \int_0^T \left\langle \frac{\delta\epsilon}{\delta R}, p \right\rangle dt \end{split}$$

OSCon overview

Summary

- New large-scale parallel TDGL integration method on GPUs
- Modeling of inclusion and other pinning centers by T_cmodulation or adaptive meshing with corresponding boundary conditions

• Makes the study of mesoscopic systems including the collective behavior possible

• Close interaction with SciDAC institutes: FASTMath & SUPER and started to work with SDAV on visualization