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Intro

Introduction — Motivation

Why Uncertainty Quantification (UQ) ?

@ Assessment of confidence in computational predictions

@ Validation and comparison of scientific/engineering models
@ Design optimization

@ Use of computational predictions for decision-support

@ Assimilation of observational data and model construction

Why UQ in SciDAC ?
@ Explore model response over range of parameter variation

@ Enhanced understanding extracted from computations
@ Particularly important given cost of SCiDAC computations
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QUEST
QUEST Goals

© Advance the state of the art in UQ theory, methods, and
software, addressing UQ challenges with extreme scale
computational problems
@ High-dimensionality
@ Nonlinearity
@ Sparse data

@ Provide expertise, advice, and state of the art UQ
algorithms and software tools to SciDAC projects
@ UQ software products
@ SciDAC partnerships
@ Outreach: UQ tutorials, summer school, web
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QUEST
Scope

The scope of QUEST covers a range of UQ activities including:
@ UQ problem setup

Characterization of the input space

Local and global sensitivity analysis

Adaptive stochastic dimensionality and order reduction

Forward and Inverse UQ

Fault tolerant UQ methods

Model comparison and validation
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QUEST
Key Elements of our UQ strategy

@ Probabilistic framework
@ Uncertainty is represented using probability theory
@ Parameter Estimation, Model Calibration

@ Experimental measurements
@ Regression, Bayesian Inference

Forward propagation of uncertainty
@ Polynomial Chaos (PC) Stochastic Galerkin methods
— Intrusive/non-intrusive
@ Stochastic Collocation methods
Model comparison, selection, and validation
Model averaging

Experimental design and uncertainty management
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QUEST

Team Expertise and Capabilities

Institution | Expertise Tools
SNL Forward and inverse UQ methods, DAKOTA
design under uncertainty UQTK
uscC Intrusive UQ methods
probabilistic modeling
Duke Sparse adaptive forward UQ methods
uT Large scale inverse problems QUESO
validation, inverse UQ
LANL Gaussian process modeling, inverse UQ | GPMSA
MIT Calibration, adaptive sampling,
inverse UQ, experimental design
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QUEST
QUEST UQ Software tools

DAKOTA

Bayesian Inference
Parallel MultiChain MCMC
Bayesian Model Analysis
Model Calibration

Optimization and calibration

Non-intrusive UQ
Global Sensitivity Analysis

> 10K registered downloads

e 6 6 ¢

Intrusive PC UQ
Non-intrusive sampling

Bayesian Inference

Gaussian Process Emulation
Model Calibration
Model discrepancy analysis

Customized sparse PCE

© 6 ¢ ¢

Random fields
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QUEST

QUEST Partnerships

DOE | Project Title Lead PI QUEST

NNSA | Parallel Dislocation Simulator T. Arsenlis Najm
(ParaDiS) LLNL SNL

FES Center for Edge Plasma Physics C.S. Chang Moser
Simulation (EPSI) Princeton uT

FES Plasma Surface Interactions: Bridging B. Wirth Higdon
from the Surface to the Micron Frontier ORNL LANL

BER Predicting Ice Sheet & Climate Evolution | P. Jones Eldred, Ghattas
at Extreme Scales (PISCEES) LANL SNL, UT

BER Multiscale Methods for Accurate, Efficient | B. Collins Debusschere
& Scale-Aware Earth System Modeling LBNL SNL

NP Nuclear Computational Low Energy J. Carlson Higdon
Initiative (NUCLEI) LANL LANL

HEP Computation-Driven Discovery S. Habib Higdon
for the Dark Universe ANL LANL

HEP Community Project for Accelerator P. Spentzouris | Prudencio
Science & Simulation (ComPASS) FNAL uT
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QUEST

Outreach Activities

@ Website
@ www.quest-scidac.org
@ Production version will be publicly accessible soon
@ UQ Tutorials in workshops/conferences
@ SAMSI UQ workshop, Raleigh, NC; Sep 7-9, 2011
@ SIAM Conference on UQ, Raleigh, NC; Apr 2-5, 2012
® UQ Summer School
@ USC, LA; Aug 22-24, 2012
@ UQ Tools Tutorial

@ Hands-on practice with UQ software tools
@ SNL, Livermore, CA; Oct 22-23, 2012.

@ Announcements went out in late July

@ http://cadmus.usc.edu/Quest-Tutorial

— Some openings still available
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Technical Progress SNL LANL UT Duke MIT USC

SNL: Software: DAKOTA — dakota.sandia.gov

M. Eldred, J. Jakeman

@ Development of interfaces: QUESO-DAKOTA-GPMSA
@ Ongoing
@ DAKOTA interfaces to both
@ C++ GPMSA implementation using QUESO components

@ Stochastic collocation

@ Nodal or hierarchical interpolation on structured grids
@ Interpolants may be local or global
— value-based or gradient-enhanced
@ Automated refinement
— uniform, dimension-adaptive, or locally-adaptive
@ Hierarchical surplus error estimates for values and
gradients applied to Qol (e.g., response covariance)

@ Compressive sensing: basis pursuit and basis denoising
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Technical Progress SNL LANL UT Duke MIT USC

DAKOTA: Application in Nuclear Reactor Modeling
M. Eldred

@ Work with CASL energy innovation hub
@ PCE/SC with uniform/adaptive refinement vs LHS

n = 4, smooth, mild anisotropy n = 10, discontinuous, high anisotropy
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Technical Progress SNL LANL UT Duke MIT USC

SNL: Software: UQTK — www.sandia.gov/UQToolkit
B. Debusschere, C. Safta, K. Sargsyan

@ Version 1.0 published under the GNU LGPL
@ Intrusive PC functionality
@ New release targeted for Fall 2012

@ Intrusive and non-intrusive utilities : -7 <
@ User-specified multi-index capabilities S Py ]
@ Flexible efficient sparse tensor representations e
: bate . -
@ Effective for high-dimensional systems -
o Random fields: " P
o Covariance matrix estimation (many samples) | e }“ ,
@ Karhunen-Loéve expansions (KLES) ,,:!v - “ﬂn -
@ Matlab version a2 = Q 4

@ Example/benchmark problems, tutorial materials
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Technical Progress SNL LANL UT Duke MIT USC

SNL: Algorithms: Gradients & Sparsity

M. Eldred, J. Jakeman, K. Sargsyan, C. Safta, B. Debusschere, H. Najm

@ Hierarchical interpolation with generalized sparse grids
@ Gradient-enhancement
@ Error indicators leverage both value and gradient surpluses
@ Building Sparse PC representations
@ Compressed Sensing (CS) — /1 regularization
— cross validation, tolerances for model choice
@ Bayesian Compressed Sensing (BCS) — Laplace priors
@ BCS/CS comparisons on Genz functions — 5-10d
— Similar convergence with no. of samples
— Slightly higher accuracy with CS
— BCS: O(100)x reduction in no. of PCE terms

discovery of sparse signals: @ N
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Technical Progress SNL LANL UT Duke MIT USC

SNL: Algorithms: Missing Data

H. Najm, B. Debusschere, C. Safta, K. Sargsyan, K. Chowdhary

@ Missing/failed measurements or computational samples
@ Partial specification of uncertain information
@ Error bars vs. joint PDF

@ Processed data products

Imputation methods
@ Existing data = probabilistic prediction of missing data

Data Free Inference (DFI) algorithm

@ Given information = probabilistic models of missing data
— Application in chemical ignition
— Extension to processed data products
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Technical Progress

SNL LANL UT Duke MIT USC

LANL: GPMSA & BART Developments

D. Higdon, J. Gattiker

@ New release of GPMSA for sensitivity analysis and
computer model calibration using Bayesian methods
@ Tutorial material
@ Range of sample problems

— sensitivity, calibration, & multivariate output

@ Prototype parallel g =
implementation of the °
Bayesian additive
regression tree (BART)
for HPC.

o linear scaling |
up to ~50p

@ tests with higher proc _ -~
counts in progress ° ‘ ‘ ‘ ‘
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(hours™)
0,
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runtime
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o
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Technical Progress

UT-Austin: Scalable Parallel Algorithms for

SNL LANL UT Duke MIT USC

Extreme-Scale Stochastic Inverse Problems
T. Bui-Thanh, O. Ghattas, J. Martin, G. Stadler (also funded by AFOSR and NSF)

Stochastic Inverse Probs:
@ PDEs & high-dim parameter
spaces (from discretized fields)
@ Current methods are prohibitive
@ Challenges:
@ appropriate choice of prior
@ consistent discretizations
(guarantee convergence to
infinite-dim problem)
@ scalable parallel MCMC
algorithms

Recent accomplishments:

(*)]

(*)]

Consistent discretizations via
appropriate mass matrix weightings

Prior defined by inverse of elliptic
operator; carried out by multigrid

Low rank approximation of Hessian
enables sampling of Gaussianized
posterior in dimension-independent
number of forward solves

Scaling to 1M parameters and 100K
processor cores
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Technical Progress SNL LANL UT Duke MIT USC

Example: Extreme-scale Seismic Inversion
T. Bui-Thanh, O. Ghattas, J. Martin, G. Stadler

linearized 3D global seismic inversion

. @ Top row: Prior samples

@ 1.07M earth model parameters @ Bottom row: Posterior samples

@ 630M wave propagation unknowns @ Difference between rows indicates

@ 100K cores on Jaguar (ORNL) information gained from (and

@ 2000x reduction in effective problem uncertainty reduced due to) data
dimension due to low rank approx @ Gordon Bell Prize finalist, SC12
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Technical Progress SNL LANL UT Duke MIT USC

UT-Austin: Software: QUESO

K. C. Estacio-Hiroms, E. E. Prudencio, K. W. Schulz (also funded by NNSA)

@ Improvement of QUESO-DAKOTA usability

]
]
]

Periodic output of samples
Output of extra information
Informative output summary

@ Implementation of GPMSA models and algorithms

]

QUESO capabilities will be usable through DAKOTA

@ Preparation of tutorial material

)

¢ © © ¢ ¢

Bayesian inversion, and forward propagation of uncertainty
Object-oriented mapping of mathematical concepts
Solution of statistical inverse problems with DRAM MCMC
Solution of statistical forward problems with Monte Carlo
Use of parallel computing for statistical analysis
References to Bayesian analysis, MCMC, Monte Carlo,
C/C++, MPI
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Technical Progress

SNL LANL UT Duke MIT USC

Duke: Stochastic Preconditioning

O. Knio, A. Alexanderian, O. Le Maitre

@ Developed a multiscale Bayesian preconditioning approach
@ Demonstrated capability to simultaneously

@ address stiffness and noise

@ represent noisy outputs w/sparse, low-order, PCEs
@ Order of magnitude reduction in # of samples / replicas
Unscaled mean trajectories

Scaled mean trajectories
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Technical Progress SNL LANL UT Duke MIT USC

Duke-MIT: Sparse Adaptive Sampling

J. Winokur, P. Conrad, O. Knio, Y. Marzouk

@ Developed a sparse adaptive pseudospectral sampling
algorithm

@ accommodates arbitrary admissible stencils
@ including a maximal polynomial basis

— without internal aliasing

@ Analysis of algorithm performance based on existing
Ocean General Circulation Model (OGCM) databases

@ Demonstrated order-of-magnitude computational savings
in simulations of the ocean circulation in the Pacific
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Technical Progress SNL LANL UT Duke MIT USC

MIT: Large-Scale Bayesian Inference
T. Moselhy, Y. Marzouk

Current state of the art

@ Markov chain Monte Carlo (MCMC) sampling is the
workhorse algorithm for Bayesian inference and prediction

@ Challenges: enormous computational effort, difficult
proposal design, insufficient convergence diagnostics

i

Inference with optimal maps

@ New approach: find a deterministic map that pushes
forward the prior measure to the posterior measure

@ Converts inference to an optimization problem, with natural
convergence diagnostics

@ Outperforms MCMC in efficiency and accuracy on a variety
of inference problems, with 108 dimensions or more

i
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Technical Progress SNL LANL UT Duke MIT USC

MIT: Large-Scale Bayesian Inference
T. Moselhy, Y. Marzouk

@ (above) sequence of maps yields samples from
non-Gaussian posterior in a chemical kinetic system

@ Current work on map-based inference:
@ Hierarchical Bayesian models
@ Parallel algorithms for stochastic optimization
@ Sequential data assimilation (i.e., filtering and smoothing)
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Technical Progress SNL LANL UT Duke MIT USC

MIT: Optimal Experimental Design

X. Huan, Y. Marzouk

@ How to choose observations or experimental conditions
optimally?
@ Bayesian approach: maximize expected information gain for
parameter inference, prediction, model discrimination, etc
@ Key computational ingredients:
@ Surrogates for physical model describing experiments
@ Statistical estimators and stochastic optimization methods
@ Recent accomplishments: stochastic approximation and
sample-average approximation for optimal Bayesian
design, using estimators of mutual information gradient

15

Expected Uity
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Technical Progress SNL LANL UT Duke MIT USC

USC: Constrained & Adaptive Constructions
E. Kalligiannaki, R. Tipireddy, G. Ghanem

Develop Constrained Stochastic Representations

@ Positive random variables

@ More general constraints on either function values or
values of nonlinear functionals of the random variables

Develop Bases Adapted to Quantity of Interest
@ Scales linearly with stochastic dimension

NET QUEST



Technical Progress SNL LANL UT Duke MIT USC

USC: Constrained Stochastic Representations
E. Kalligiannaki, G. Ghanem

Z = {y(w) € L2(2,%(H), P) : y(w) satisfies constraints Vw}

The projection of y € L, on Z:
@ Sample from prior PC expansion
@ Delete realizations that do not satisfy constraints
@ Recompute PC coefficients from remaining realizations

]

- -

Improve Convergence of Stochastic ODE Generator for constrained populations
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Technical Progress SNL LANL UT Duke MIT USC

USC: Adaptation to Quantity of Interest (Qol)

R. Tipireddy, G. Ghanem

Expand u(&): polynomials in n = A€

@ with proper choice of A, the i_Sz“an-.
measure of the solution is P
concentrated along leading 7; -

dimension

@ Ais chosen so that n; contains all
Gaussian content of Qol

4
30
> —— Full-Dimension
L —=— Reduced 1D Model —©— reduced-basis
- 30 " ;
S
225
2 20
220t -
§ 5.
LS o
% 10
S10r
[
L 5
o Py ) . g,
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 28 03 032 034 03 038 0.4
Displacement in x direction at (0.25, 0.00) Von Mises stress at (02245’01 101 )

NET QUEST 2



Closure
Closure

@ Work on UQ software and algorithms development

Computational efficiency
Functionality, usability, scalability
Adaptivity, sparsity, preconditioning
Reduced-order, low-rank
Convergence, stability

Partial information, missing data

@ Robustifying algorithms for large-scale applications

(2
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@ Software integration well along the way
@ Outreach via web, tutorials, and summer school
@ SciDAC partnership activities getting off the ground
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