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Overview 

• Li-ion batteries have revolutionized consumer electronics 
and have the potential to do the same for transportation 
(e.g., plug-in hybrids, all-electrics) and electrical distribution 
(e.g., load leveling) 

• To do so, energy/power density, lifetime, safety must be 
increased 

• Key issue: solid-electrolyte interphase (SEI) layer at 
electrolyte-anode interface, product of electrolyte 
decomposition 

• Understanding has been hindered by need for both quantum 
mechanical description and sufficiently large length/time 
scales to capture necessary complexity 

• In this work, we: 

– Develop new Discontinuous Galerkin (DG) electronic 
structure method to accomplish quantum molecular 
dynamics (QMD) on an unprecedented scale 

– Apply new method to advance understanding of the 
structure and dynamics of electrolyte/SEI/anode systems 

 

 

QMD snapshot of SEI layer in Li-ion cell 



Scientific questions 

• What are the chemical mechanisms of SEI formation? 

• How does the composition of the electrolyte affect interface/interphase 

reactivity and mass transport to the interface? 

• How does the molecular structure of the electrolyte change near the anode 

interface and affect SEI formation and evolution? 

• What fundamental chemical insights can be used for future design of 

electrolyte/anode systems, from knowledge of the mechanism of SEI 

formation and the relation to electrolyte structure, dynamics, and interface 

reactivity? 

 



Simulations 

• Initial phase of project, while new DG code is 

developed and optimized: Qbox [1] for 

systems of < 1,000 atoms 

• Li+ solvation and diffusion: determine diffusion 

coefficients, effect of counter-ion, differences 

in bulk vs near interface 
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SEI 

Molecular dynamics simulation of 
50/50 ethylene carbonate/propylene 
carbonate electrolyte 

[1] Gygi, Draeger, et al., Proc. ACM/IEEE Supercomputing ’06;  Gygi, IBM J. Res. Dev., 2008 



Simulations 

• As the new DG method and code ramp up, we transition to it for larger scale 

simulations, up to 10,000 atoms and more 

• Full electrolyte-anode and electrolyte-SEI systems 

EC/PC mixture (+ LiPF6) on graphite (left) and Li2CO3 (right), used to study chemical reactions on the 
anode surface (for initial SEI formation) and a representative SEI compound (for SEI growth/evolution) 



Quantum molecular dynamics (QMD) 

• Solve Kohn-Sham equations for electronic structure, compute quantum mechanical 

forces, move atoms, repeat – thousands to millions of times 

Kohn-Sham equations 

(Schrödinger) 

Self-consistent field (SCF) solution process 

(Poisson) 

~ 104 atoms, more eigenfunctions 

? 



• DG framework allows solving the Kohn-Sham equations in a discontinuous basis 

• Because basis can be discontinuous, can possess number of desirable properties 

simultaneously: 

– Efficient (few tens of DOF/atom) 

– Systematically improvable 

– Strictly local:  identically zero outside prescribed  

      subdomain, zero overlap across subdomains 

– Orthonormal:  standard eigenproblem, well-cond. 

• How?  

– Partition domain into subdomains (elements) 

– Solve Kohn-Sham equations in each element 

– Basis is union of local Kohn-Sham solutions 

What’s new: releasing constraint of continuity 

Solve large N-atom problem in highly efficient basis of O(N) local Kohn-Sham solutions 



• Discontinuity is accommodated by surface (“flux”) terms [1] 

• Kohn-Sham Hamiltonian becomes 

 

 

 

 

• Kohn-Sham equations: 

• Wavefunctions:  

• Density: 

• Energy:  

DG formulation 

[1] Lin, Lu, Ying, E, JCP 2012 



Initial results 

• Total energies converged to < 1e-3 Ha/atom absolute error with 15 basis funcs/atom 

 

 

 

 

• Forces converged to < 1e-4 Ha/au absolute error with 15 basis funcs/atom 

 

 

 

 

• Largest system so far: 4,392 atoms on 2,196 cpus by direct diagonalization using 

element orbitals [1] 

 

 

Si: random displacements, series of translations 

[1] Lin, Ying, PRB 2012 



• Solving for Kohn-Sham wavefunctions of N atom system scales as O(N3) 

• Solve for density directly instead 

 

 

• Need efficient approximation of Fermi function  Pole expansion [1] 

 

 

• Need efficient inversion 

• Need only diagonal  Selected Inversion [2] 

•  Pole Expansion and Selected Inversion (PEXSI) 

• No need to compute eigenfunctions or eigenvalues 

• Scaling O(N) for quasi-1D systems; O(N2) for metallic 3D 

 

What else is new: PEXSI 

[1] Lin, Lu, Ying, E, 2009;  [2] Lin, Yang, Meza, Lu, Ying, E, 2011 



Initial results 

• Metallic carbon nanotube, CNT (8,8), 512 atoms, atomic orbital basis [1] 

 

 

 

• Accuracy of expansion at T = 300K 

 

 

 

 

 

• Largest system: 10,240 atoms, 97 sec per pole (one SCF iteration) on a single processor 

 

 [1] Lin, Chen, Yang, He, 2012 



SCF iterations 

• Standard SCF convergence acceleration methods such as Anderson’s method can 

show poor convergence for metallic systems, and strong temperature and system-

size dependence 

• New elliptic preconditioner [1] has been shown to effectively address both low-

temperature and system-size issues, for metals and insulators alike 

 

 

[1] Lin, Yang, submitted 



Parallelization 

• Currently DG-KS parallelized over elements: MPI 

• PEXSI serial 

• To get to massive parallelism, will exploit multiple levels 

afforded by DG-PEXSI 

– k-points 

– Poles 

– Elements 

– Quadrature points (or other subdomains) within elements 

• MPI or MPI/OpenMP hybrid 

 

 



Summary 

• Goals: 

– Develop new DG electronic structure method to accomplish QMD on unprecedented scales 

– Apply to understand structure and dynamics of electrolyte/SEI/anode systems in Li-ion cells 

– Make resulting new method/code available to community 

• So far: 

– DG-Kohn-Sham method/code: O(N3), > 4,000 atoms SCF, total energies and forces with 
planewave accuracy, parallelized over elements 

– AO-PEXSI method/code: O(N) to O(N2), > 10,000 atoms SCF, total energies and forces in 
agreement with O(N3) diagonalization, serial 

• To do: 

– DG-PEXSI: O(N) to O(N2), > 10,000-atom QMD, total energies and forces with planewave 
accuracy; parallelized over k-points, poles, elements, intra-element; > 100,000 cpu 

– Apply to electrolyte/SEI/anode systems of increasing complexity as methods/codes permit, 
1,000 to > 10,000 atoms; understand structure/dynamics, compute key parameters 

– Document and distribute 

 

 


